Skip to main content
Log in

Spatial Memory and the Control of Adenylate Cyclase by Serotonin and Dopamine in the Brain in Rats with Streptozotocin Diabetes

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

One of the complication of type 1 diabetes mellitus (DM1) is cognitive deficit, developing as a result of neurodegenerative changes in the brain. The aims of the present work were to study learning and spatial memory in rats with streptozotocin DM1 of different durations (1.5 and 6 months) and to investigate the activity of the adenylate cyclase signal system (ACSS) in the brain, this system being sensitive to serotonin and dopamine receptor agonists. Rats with DM1 for 1.5 months showed no impairment to spatial memory in a Morris water maze. When the duration of DM1 was increased to six months, spatial memory and learning ability decreased. Impaired regulation of adenylate cyclase by types 1 and 6 serotonin receptor antagonists and type 2 dopamine receptors was seen at both durations of DM1, indicating that these are primary in the development of cognitive deficit. Impairments to the ACSS can be regarded as key factors in the etiology and pathogenesis of cognitive dysfunctions in DM1. It is hypothesized that cognitive deficit develops only at the late stages of DM1, and results from impairments to the serotonin and dopamine signal systems of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. B. Sukhov, V. N. Shipilov, O. V. Chistyakova, et al., “Prolonged intranasal administration of insulin improves spatial memory in male rats with long-term diabetes mellitus,” Dokl. Akad. Nauk, 453, No. 5, 577–580 (2013).

    Google Scholar 

  2. A. O. Shpakov, “Functional state of biogenic amine- and acetylcholine-regulated brain signal systems in diabetes mellitus,” Tsitologiya, 54, No. 6, 459–468 (2012).

    CAS  Google Scholar 

  3. P. M. Abraham, K. P. Kuruvilla, J. Mathew, et al., “Alterations in hippocampal serotonergic and INSR function in streptozotocin induced diabetic rats exposed to stress: neuroprotective role of pyridoxine and Aegle marmelose,” J. Biomed. Sci., 17, 78 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  4. E. Benito and A. Barco, “CREB’s control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models,” Trends Neurosci., 33, No. 5, 230–240 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. G. J. Biessels and W. H. Gispen, “The impact of diabetes on cognition: what can be learned from rodent models?” Neurobiol. Aging, 26, Supplement 1, 36–41 (2005).

    Article  PubMed  Google Scholar 

  6. G. J. Biessels, A. Kamal, G. M. Ramakers, et al., “Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats,” Diabetes, 45, No. 9, 1259–1266 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. G. J. Biessels, A. Kamal, I. J. Urban, et al., “Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: effects of insulin treatment,” Brain Res., 800, No. 1, 125–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. A. M. Brands, G. J. Biessels, E. H. de Haan, et al., “The effects of type 1 diabetes on cognitive performance: a meta-analysis,” Diabetes Care, 28, 726–735 (2005).

    Article  PubMed  Google Scholar 

  9. A. M. Brands, R. P. Kessels, R. P. Hoogma, et al., “Cognitive performance, psychological well-being, and brain magnetic resonance imaging in older patients with type 1 diabetes,” Diabetes, 55, 1800–1806 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. O. V. Chistyakova, V. M. Bondareva, V. N. Shipilov, et al., “A positive effect of intranasal insulin on spatial memory in rats with neonatal diabetes mellitus,” Endocrinol. Studies, 1 (e16), 67–75 (2011).

    CAS  Google Scholar 

  11. E. Ezzeldin, W. A. Souror, T. El-Nahhas, et al., “Biochemical and neurotransmitters changes associated with tramadol in streptozotocin-induced diabetes in rats,” Biomed. Res. Int., Article ID 238780 (2014).

  12. A. M. Jacobson, G. Musen, C. M. Ryan, et al., “Long-term effect of diabetes and its treatment on cognitive function,” New Engl. J. Med., 356, 1842–1852 (2007).

    Article  PubMed  Google Scholar 

  13. A. Kamal, G. J. Biessels, S. E. Duis, and W. H. Gispen, “Learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: interaction of diabetes and ageing,” Diabetologia, 43, No. 4, 500–506 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. A. Kamal, G. J. Biessels, G. M. Ramakers, and W. Hendrik Gibsen, “The effect of short duration streptozotocin-induced diabetes mellitus on the late phase and threshold of long-term potentiation induction in the rat,” Brain Res., 1053, No. 1–2, 126–130 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. M. Khelfaoui, F. Gambino, X. Houbaert, et al., “Lack of the presynaptic RhoGAP protein oligophrenin 1 leads to cognitive disabilities through dysregulation of the cAMP/PKA signalling pathway,” Philos. Trans. R. Soc. Lond. B Biol. Sci., 369, No. 1633, 20130160 (2013).

    Article  PubMed  Google Scholar 

  16. T. P. Kumar, S. Antony, G. Gireesh, et al., “Curcumin modulates dopaminergic receptor, CREB and phospholipase C gene expression in the cerebral cortex and cerebellum of streptozotocin induced diabetic rats,” J. Biomed. Sci., 17, No. 43, 1–11 (2010).

    Google Scholar 

  17. G. Malleret, R. Hen, J. L. Guillou, et al., “5-HT1B receptor knockout mice exhibit increased exploratory activity and enhanced spatial memory performance in the Morris water maze,” J. Neurosci., 19, No. 14, 6157–6168 (1999).

    CAS  PubMed  Google Scholar 

  18. A. Meneses, “5-HT system and cognition,” Neurosci. Biobehav. Rev., 23, No. 8, 1111–1125 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. M. Nasehi, M. Jamshidi-Mehr, F. Khakpai, and M. R. Zarrindast, “Possible involvement of CAI 5-HT1B/1D and 5-HT2A/2B/2C receptors in harmaline-induced amnesia,” Pharmacol. Biochem. Behav., 125, 70–77 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. C. R. Noguira, U. F. Machado, R. Curi, and A. R. Carpinelli, “Modulation of insulin secretion and 45Ca2+ efflux by dopamine in glucose-stimulated pancreatic islets,” Gen. Pharmacol., 25, 909–1016 (1994).

    Article  Google Scholar 

  21. I. Papazoglou, F. Berthou, N. Vicaire, et al., “Hypothalamic serotonin-insulin signaling cross-talk and alterations in a type 2 diabetic model,” Mol. Cell Endocrinol., 350, No. 1, 136–144 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. G. Perez-Garcia and A. Meneses, “Memory formation, amnesia, improved memory and reversed amnesia: 5-HT role,” Behav. Brain Res., 195, No. 1, 17–29 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. M. V. Puig, J. Rose, R. Schmidt, and N. Freund, “Dopamine modulation of learning and memory in the prefrontal cortex: insights from studies in primates, rodents, and birds,” Front Neural Circuits, 8, 93 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. L. P. Reagan, “Diabetes as a chronic metabolic stressor: causes, consequences and clinical complications,” Exp. Neurol., 233, No. 1, 68–78 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. R. Robinson, A. Krishnakumar, and C. S. Paulose, “Enhanced dopamine D1 and D2 receptor gene expression in the hippocampus of hypoglycaemic and diabetic rats,” Cell. Mol. Neurobiol., 29, No. 3, 365–372 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. C. M. Ryan, M. O. Geckle, and T. J. Orchard, “Cognitive efficiency declines over time in adults with Type 1 diabetes: effects of micro- and macrovascular complications,” Diabetologia, 46, No. 7, 940–948 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. M. Sandrini, G. Vitale, A. V. Vergoni, et al., “Streptozotocin-induced diabetes provokes changes in serotonin concentration and on 5-HT1A and 5-HT2 receptors in the rat brain,” Life Sci., 60, No. 16, 1393–1397 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. A. Scheen, “Central nervous system: a conductor orchestrating metabolic regulations harmed by both hyperglycaemia and hypoglycaemia,” Diabetes Metab., 36, 31–38 (2010).

    Article  Google Scholar 

  29. A. Shpakov, O. Chistyakova, K. Derkach, and V. Bondareva, “Hormonal signaling systems of the brain in diabetes mellitus,” in: Neurodegenerative Diseases, R. C.-C. Chang (ed.), Intech Open Access Publisher, Rijeka, Croatia (2011), pp. 349–386.

    Google Scholar 

  30. A. O. Shpakov, O. V. Chistyakova, K. V. Derkach, et al., “Intranasal insulin affects adenylyl cyclase system in rat tissues in neonatal diabetes,” Central Eur. J. Biol., 7, 33–47 (2012).

    CAS  Google Scholar 

  31. A. O. Shpakov, K. V. Derkach, O. V. Chistyakov, et al., “The brain adenylyl cyclase signaling system and cognitive functions in rats with neonatal diabetes under the influence of intranasal serotonin,” J. Metab. Syndr., 1, No. 2, 1–9 (2012).

    Google Scholar 

  32. A. O. Shpakov, E. A. Shpakova, I. I. Tarasenko, et al., “The peptides mimicking the third intracellular loop of 5-hydroxytryptamine receptors of the types 1B and 6 selectively activate G proteins and receptor-specifically inhibit serotonin signaling via the adenylyl cyclase system,” Int. J. Pept. Res. Ther., 16, 95–105 (2010).

    Article  CAS  Google Scholar 

  33. H. Umegaki, J. Munoz, R. C. Meyer, et al., “Involvement of dopamine D(2) receptors in complex maze learning and acetylcholine release in ventral hippocampus of rats,” Neuroscience, 103, No. 1, 27–33 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. M. A. Van Tilburg, C. C. McCaskill, J. D. Loane, et al., “Depressed mood is a factor in glycemic control in type 1 diabetes,” Psychosom. Med., 63, 551–555 (2001).

    Article  PubMed  Google Scholar 

  35. S. A. Wrighten, G. G. Piroli, C. A. Grillo, and L. P. Reagan, “A look inside the diabetic brain: Contributors to diabetes-induced brain aging,” Biochim. Biophys. Acta, 1792, No. 5, 444–453 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. T. Yamato, Y. Misumi, S. Yamasaki, et al., “Diabetes mellitus decreases hippocampal release of neurotransmitters: an in vivo microdialysis study of awake, freely moving rats,” Diabet. Nutr. Metab., 17, 128–136 (2004).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Sukhov.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 101, No. 3, pp. 279–290, March, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhov, I.B., Chistyakova, O.V., Shipilov, V.N. et al. Spatial Memory and the Control of Adenylate Cyclase by Serotonin and Dopamine in the Brain in Rats with Streptozotocin Diabetes. Neurosci Behav Physi 46, 632–638 (2016). https://doi.org/10.1007/s11055-016-0289-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-016-0289-7

Keywords

Navigation