Skip to main content
Log in

Geometric Features of Structuring of Amphiphilic Macromolecules on the Surface of a Spherical Nanoparticle

  • Published:
Polymer Science, Series C Aims and scope Submit manuscript

Abstract

The self-assembly of amphiphilic homopolymers tightly grafted to the spherical nanoparticle and immersed in a selective solvent is studied by the computer experiment method. Conditions under which macromolecules form thin membrane-like layers surrounding the nanoparticle are determined. It is first shown that the emerging polymer structures may be approximated by complete embedded minimal surfaces satisfying the Weierstrass representation, namely, helicoid, catenoid, and Enneper and Costa surfaces. Mathematical constructions defining these minimal surfaces highlight a new type of ordering of polymer structures and determine its symmetry classification similar to crystal classification by Fedorov groups. Calculations for the two considered sets of parameters show that structures approximated by a helicoid are energetically more favorable than structures approximated by other minimal surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. F. S. Bates and G. H. Fredrickson, Annu. Rev. Phys. Chem. 41, 525 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. T. Lodge, Microchim. Acta 116, 1 (1994).

    Article  CAS  Google Scholar 

  3. I. W. Hamley, K. A. Koppi, J. H. Rosedale, F. S. Bates, K. Almdal, and K. Mortensen, Macromolecules 26, 5959 (1993).

    Article  CAS  Google Scholar 

  4. Block Copolymers in Nanoscience, Ed. by M. Lazzari, G. Liu, and S. Lecommandoux (Wiley, Darmstadt, 2006).

    Google Scholar 

  5. T. P. Lodge, Macromol. Chem. Phys. 204, 265 (2003).

    Article  CAS  Google Scholar 

  6. L. Leibler, Macromolecules 13, 1602 (1980).

    Article  CAS  Google Scholar 

  7. A. N. Semenov, Sov. Phys. JETP 61, 733 (1985).

    Google Scholar 

  8. I. Ya. Erukhimovich and A. R. Khokhlov, Vysokomol. Soedin. A 35, 1808 (1993).

    CAS  Google Scholar 

  9. G. Floudas, N. Hadjichristidis, Y. Tselikas, and I. Erukhimovich, Macromolecules 30, 3090 (1997).

    Article  CAS  Google Scholar 

  10. V. Abetz and R. Stadler, Macromolecules 30, 7435 (1997).

    Article  Google Scholar 

  11. I. Ya. Erukhimovich, Yu. G. Smirnova, and V. Abetz, Polym. Sci., Ser. A 45, 1093 (2003).

    Google Scholar 

  12. Y. G. Smirnova, G. Brinke, and I. Ya. Erukhimovich, J. Chem. Phys. 124, 054907 (2006).

  13. I. Ya. Erukhimovich, Eur. Phys. J. E 18, 383 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. R. Nap, N. Sushko, I. Erukhimovich, and G. Brinke, Macromolecules 39, 6765 (2006).

    Article  CAS  Google Scholar 

  15. Y. A. Kriksin, P. G. Khalatur, I. Ya. Erukhimovich, G. Brinke, and A. R. Khokhlov, Soft Matter 5, 2896 (2009).

    Article  CAS  Google Scholar 

  16. A. Glagoleva, I. Erukhimovich, and V. Vasilevskaya, Macromol. Theory Simul. 22, 31 (2013).

    Article  CAS  Google Scholar 

  17. I. Erukhimovich, Polym. Sci., Ser. C 60, 49(2018).

    Article  CAS  Google Scholar 

  18. S. Lee, M. J. Bluemle, and F. S. Bates, Science 330, 349 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. D. A. Hajduk, P. E. Harper, S. M. Gruner, C. C. Honeker, G. Kim, E. L. Thomas, and L. J. Fetters, Macromolecules 27, 4063 (1994).

    Article  CAS  Google Scholar 

  20. E. L. Thomas, D. B. Alward, D. J. Kinning, D. C. Martin, D. L. Handlin, and L. J. Fetters, Macromolecules 19, 2197 (1986).

    Article  CAS  Google Scholar 

  21. A. K. Khandpur, S. Foerster, F. S. Bates, I. W. Hamley, A. J. Ryan, W. Bras, K. Almdal, and K. Mortensen, Macromolecules 28, 8796 (1995).

    Article  CAS  Google Scholar 

  22. A. Reddy, X. Feng, E. L. Thomas, and G. M. Grason, Macromolecules 54, 9223 (2021).

    Article  CAS  Google Scholar 

  23. R. Mosseri and J. F. Sadoc, J. Phys. Colloques 51, C7–C257 (1990).

    Article  Google Scholar 

  24. A. Talis, A. Everstov, and V. Kraposhin, Acta Crystallogr., Sect. A 77, 7 (2021).

    Article  CAS  Google Scholar 

  25. T. Castle, M. E. Evans, S. T. Hyde, S. Ramsden, and V. Robins, Interface Focus 2, 555 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. B. K. Vainshtein, Modern Crystallography, Vol. 1 (Nauka, Moscow, 1979; Springer, Berlin, 1994).

  27. A. A. Tuzhilin and A. T. Fomenko, Elements of Geometry and Topology of Minimal Surfaces (URSS, Moscow, 2022; American Mathematical Society, 2023).

  28. A. T. Fomenko, Variational Methods in Topology (Nauka, Moscow, 1982; CRC Press, 2020).

  29. L. Anetor, Minimal Surfaces Embedded in Euclidean Space (Balkan Press, Bucharest, 2016).

    Google Scholar 

  30. W.-F. Pu, A. Ushakova, R. Liu, A. A. Lazutin, and V. V. Vasilevskaya, J. Chem. Phys. 152, 234903 (2020).

  31. A. S. Ushakova, A. A. Lazutin, and V. V. Vasilevskaya, Macromolecules 54, 6285 (2021).

    Article  CAS  Google Scholar 

  32. A. S. Ushakova and V. V. Vasilevskaya, Polymers 14, 4358 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Z. R. Saraev, A. A. Lazutin, and V. V. Vasilevskaya, Molecules 27, 8535 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. A. A. Lazutin, V. V. Vasilevskaya, Polymer 255, 125172 (2022).

  35. D. Khoffman and G. Karkher, Results of Science and Technology in the series Modern Problems of Mathematics. Fundamental Directions, Vol. 90 (Fizmatlit, Moscow, 2003) [in Russian].

    Google Scholar 

  36. T. I. Löbling, J. S. Haataja, C. V. Synatschke, F. H. Schacher, M. Müller, A. Hanisch, A. H. Groschel, and A. H. E. Müller, ACS Nano 8, 11330 (2014).

    Article  PubMed  Google Scholar 

  37. S. J. Plimpton, Computat. Phys 117, 1 (1995).

    Article  CAS  Google Scholar 

  38. J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971).

    Article  CAS  Google Scholar 

  39. L. Verlet, Phys. Rev. 159, 98 (1967).

    Article  CAS  Google Scholar 

  40. J. Smith, Compos. Sci. Technol. 63, 1599 (2003).

    Article  CAS  Google Scholar 

  41. M. Bishop, M. H. Kalos, and H. L. Frisch, J. Chem. Phys. 70, 1299 (1979).

    Article  CAS  Google Scholar 

  42. G. S. Grest and K. Kremer, Phys. Rev. A 33, 3628 (1986).

    Article  CAS  Google Scholar 

  43. J. Cho and Y. Ogata, J. Geom. 108, 463 (2017).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-73-20104) and carried out using the equipment of the shared research facilities of HPC computing resources at the Lomonosov Moscow State University. The data processing was performed using facilities of the Interlaboratory Computer Center at the Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. L. Talis or V. V. Vasilevskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitkovskiy, D.A., Lazutin, A.A., Ushakova, A.S. et al. Geometric Features of Structuring of Amphiphilic Macromolecules on the Surface of a Spherical Nanoparticle. Polym. Sci. Ser. C 65, 3–10 (2023). https://doi.org/10.1134/S1811238223700297

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238223700297

Navigation