Skip to main content
Log in

Self-Assembly of Gel-Like Particles and Vesicles in Solutions of Polymers with Amphiphilic Repeat Unit

  • THEORY AND SIMULATION
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

An Erratum to this article was published on 01 June 2023

This article has been updated

Abstract

The features of self-assembly of amphiphilic homopolymers with solvophobic backbone and solvophilic pendant groups in dilute solutions have been studied by means of mesoscale computer simulation. It has been found that spherical, cylindric, disk-like, and multilayer vesicles can be formed in such systems, the transitions between them occurring with the change in the solvent quality with respect to the solvophilic pendant groups. Amphiphilic homopolymers can also form worm-shaped branched aggregates with gel-like structure. The obtained data have been compared to the earlier results [Macromolecules, 53 (2020) 4783–4795] for the solutions of amphiphilic homopolymers with solvophilic backbone and solvophobic pendant groups; principal difference in the self-assembly of two types of macromolecules has been revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Change history

REFERENCES

  1. G. M. Whitesides and B. Grzybowski, Science 295 (5564), 2418 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. D. Philp and J. F. Stoddart, Angew. Chem. Int. Ed. Eng. 35 (11), 1154 (1996).

    Article  Google Scholar 

  3. S. Tanaka, C. A. Kerfeld, M. R. Sawaya, F. Cai, S. Heinhorst, G. C. Cannon, and T. O. Yeates, Science 319 (5866), 1083 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. C. V. Kulkarni, Nanoscale 4 (19), 5779 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. K. Ariga, J. P. Hill, M. V. Lee, A. Vinu, R. Charver, and S. Acharya, Sci. Technol. Adv. Mater. 9 (1), 014109 (2008).

  6. K. Liu, Y. Sun, M. Cao, J. Wang, J. R. Lu, and H. Xu, Curr. Opin. Colloid Interface Sci. 45, 57 (2020).

    Article  CAS  Google Scholar 

  7. C. Wang, Z. Wang, and X. Zhang, Acc. Chem. Res. 45 (4), 608 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. B. Siddique and J. Duhamel, Langmuir 27 (11), 6639 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. M. R. Dreher, A. J. Simnick, K. Fischer, R. J. Smith, A. Patel, M. Schmidt, and A. Chilkoti, J. Am. Chem. Soc. 130 (2), 687 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. T. Zhong, L. Min, Z. Wang, F. Zhang, and B. Zuo, RSC Adv. 8 (25), 13806 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. S. M. Douglas, H. Dietz, T. Liedl, B. Hogberg, F. Graf, and W. M. Shih, Nature 459, 414 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. Hung, M. Mager, M. Hembury, F. Stellacci, M. M. Stevens, and I. Yarovsky, Chem. Sci. 4 (3), 928 (2013).

    Article  CAS  Google Scholar 

  13. R. D. Miller and R. Riblet, Nucleic Acids Res. 23 (12), 2339 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Y. Mai and A. Eisenberg, Chem. Soc. Rev. 41 (18), 5969 (2012).

    Article  Google Scholar 

  15. L. I. Atanase and G. Riess, Polymers 10 (1), 62 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. V. V. Vasilevskaya and E. N. Govorun, Polym. Rev. 59 (4), 625 (2019).

    Article  CAS  Google Scholar 

  17. T. S. Kale, A. Klaikherd, B. Popere, and S. Thayumanavan, Langmuir 25 (17), 9660 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. J. Zhang, K. Liu, K. Mullen, and M. Yin, Chem. Commun. 51 (58), 11541 (2015).

    Article  CAS  Google Scholar 

  19. J. You, L. Liu, W. Huang, I. Manners, and H. Dou, ACS Appl. Mater. Interfaces 13 (11), 13648 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. E. Guazzelli, E. Masotti, M. Calosi, M. Kriechbaum, F. Uhlig, G. Galli, and E. Martinelli, Polymer 231, 124107 (2021).

  21. S. Swan, F. O. Egermole, S. T. Nguyen, and J.-H. Kim, Langmuir 36 (16), 4548 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Y. Kimura and T. Terashima, Eur. Polym. J. 139 (5), 110001 (2020).

  23. A. I. Buglakov, D. E. Larin, and V. V. Vasilevskaya, Polymer 232, 124160 (2021).

  24. L.-H. Wang, T. Wu, Z. Zhang, and Y.-Z. You, Macromolecules 49 (1), 362 (2016).

    Article  Google Scholar 

  25. J. G. C. Baptista, S. P. J. Rodrigues, A. F. Y. Matsushita, C. Vitorino, T. M. R. Maria, H. D. Burrows, A. A. C. C. Pais, and A. J. M. Valente, J. Mol. Liq. 222, 287 (2016).

    Article  CAS  Google Scholar 

  26. V. V. Vasilevskaya, P. G. Khalatur, and A. R. Khokhlov, Macromolecules 36 (26), 10103 (2003).

    Article  CAS  Google Scholar 

  27. D. E. Larin, A. A. Glagoleva, E. N. Govorun, and V. V. Vasilevskaya, Polymer 146, 230 (2018).

    Article  CAS  Google Scholar 

  28. A. I. Buglakov, D. E. Larin, and V. V. Vasilevskaya, Macromolecules 53 (12), 4783 (2020).

    Article  CAS  Google Scholar 

  29. A. A. Lazutin, A. N. Kosmachev, and V. V. Vasilevskaya, J. Chem. Phys. 151 (15), 154903 (2019).

  30. A. A. Glagoleva and V. V. Vasilevskaya, J. Chem. Phys. 147 (18), 184902 (2017).

  31. R. D. Groot and P. B. Warren, J. Chem. Phys. 107 (11), 4423 (1997).

    Article  CAS  Google Scholar 

  32. P. Espanol and P. B. Warren, J. Chem. Phys. 146 (15), 150901 (2017).

  33. J. Nam, Y. J. Kim, J. G. Kim, and M. Seo, Macromolecules 52 (24), 9484 (2019).

    Article  CAS  Google Scholar 

  34. V. Yu. Rudyak, E. A. Efimova, D. V. Guseva, and A. V. Chertovich, Polymers 11 (11), 36 (2019).

    Article  Google Scholar 

  35. Q. Zhu, T. R. Scott, and D. R. Tree, Soft Matter 17 (1), 24 (2020).

    Article  PubMed  Google Scholar 

  36. Y. H. Feng, X. P. Zhang, Z. Q. Zhao, and X. D. Guo, Mol. Pharmaceutics 17 (6), 1778 (2020).

    Article  CAS  Google Scholar 

  37. R. L. Anderson, D. J. Bray, S. Ferrante, M. G. Noro, I. P. Stott, and P. B. Warren, J. Chem. Phys. 147 (9), 094503 (2017).

  38. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14 (1), 33 (1996).

    Article  CAS  Google Scholar 

  39. D. N. Theodorou and U. W. Suter, Macromolecules 18, 1206 (1985).

    Article  CAS  Google Scholar 

  40. K. Solc and W. H. Stockmayer, J. Chem. Phys. 54 (1), 2756 (1971).

    Article  CAS  Google Scholar 

  41. P. G. Khalatur, A. R. Khokhlov, D. A. Mologin, and E. A. Zhelogovskaya, Macromol. Theory Simul. 7 (3), 299 (1998).

    Article  CAS  Google Scholar 

  42. B. S. Li, K. K. L. Cheuk, D. Yang, J. W. Y. Lam, L. J. Wan, C. Bai, and B. Z. Tang, Macromolecules 36 (15), 5447 (2003).

    Article  CAS  Google Scholar 

  43. Y. Zhu, L. Liu, and J. Du, Macromolecules 46 (1), 194 (2013).

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Foundation for Basic Research (project code 20-33-90320) and performed using the resources of the Supercomputer Complex of Moscow State University. The data analysis was performed at the Interlaboratory Computer Center of Nesmeyanov Institute of Organoelement Compounds, RAS with support from the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Buglakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Karpushkin

The surname of the first author A.I. Bulgakov should read A.I. Buglakov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buglakov, A.I., Ivanov, V.A. & Vasilevskaya, V.V. Self-Assembly of Gel-Like Particles and Vesicles in Solutions of Polymers with Amphiphilic Repeat Unit. Polym. Sci. Ser. A 64, 220–231 (2022). https://doi.org/10.1134/S0965545X22030063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X22030063

Navigation