Skip to main content
Log in

Mössbauer 57Fe and 129I Spectra, as Well as the Local Environment of Atoms, in Chalcogenide CuI–AgI–As2Se3 and CuI–PbI2–SbI3–As2Se3 Films Deposited from Glass Solutions in N-Butylamine

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The results of a Mössbauer study of amorphous CuI–AgI–As2Se3 and CuI–PbI2–SbI3–As2Se3 films are presented, applied from glass solutions in n-butylamine. By Mössbauer spectroscopy with the use of probes 57Fe and 129I, a correlation is established between the transformation of the rigidity and conservatism of the vitreous matrix on the content of copper and silver iodides in CuI–AgI–As2Se3 and CuI–PbI2–SbI3–As2Se3 films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Owen, A.E., Chalcogenide glasses as ion-selective materials for solid state electrochemical sensors, J. Non-Cryst. Solids, 1980, vols. 35–36, pp. 999–1004.

    Article  Google Scholar 

  2. Vlasov, Yu.G., Bychkov, E.A., Kazakova, E.A., and Borisova, Z.U., Chalcogenide glass electrodes for the determination of silver ions in highly acidic environments, Zh. Anal. Khim., 1984, vol. 33, no. 3, pp. 452–455.

    Google Scholar 

  3. Medvedev, A.M. and Bychkov, E.A., Ionic and electronic conductivity in glasses of the copper-silver-arsenic-selenium system, in Khimiya i fizika tverdogo tela (Chemistry and Physics of the Solid State), Leningrad: LGU, 1983, Part 3, pp. 17–23.

  4. Vlasov, Yu.G., Bychkov, E.A., and Medvedev, A.M., Chalcogenide glass electrodes for the determination of copper ions, Zh. Anal. Khim., 1985, vol. 40, no. 3, pp. 438–444.

    CAS  Google Scholar 

  5. Medvedev, A.M., Bychkov, E.A., and Vlasov, Yu.G., Molecular clusters in Cu-Ag-As-Se glasses, probed by 57Fe impurity Mossbauer spectroscopy, in Proceedings of the 2nd Symposium on the Solid State Chemistry, 1989, Pardubice, ČSSR, pp. 339–340.

  6. Bolotov, A.M., Copper conductive chalcogenide glasses, Cand. Sci. Dissertation, St. Petersburg, 1993.

  7. Baydakov, D.L., Electrical conduction of chalcogenide CuI–AgI–As2Se3 and PbI2–AgI–As2Se3 films obtained by the chemical deposition method, Glass Phys. Chem., 2013, vol. 39, no. 6, pp. 634–638.

    Article  CAS  Google Scholar 

  8. Chern, G.C. and Lauks, I., Spin-coated amorphous chalcogenide films, J. Appl. Phys., 1982, vol. 53, pp. 6979–6982.

    Article  CAS  Google Scholar 

  9. Lauks, I., Chern, G.C., and Ton, K.Y., Spin coated chalcogenide films: Research and development, Electrochem. Soc. Proc., 1982, vol. 83, no. 1, pp. 93–97.

    Google Scholar 

  10. Zenkin, S.A., Mamedov, S.B., Mikhailov, M.D., Turkina, E.Yu., and Yusupov, I.Yu., Mechanism for interaction of amine solutions with monolithic glasses and amorphous films in the As–S system, Glass Phys. Chem., 1997, vol. 23, no. 5, pp. 393–399.

    CAS  Google Scholar 

  11. Slang, S., Palka, K., Loghina, L., Kovalskiy, A., Jain, H., and Vlchek, M., Mechanism of the dissolution of As-S chalcogenide glass in n-butylamine and its influence on the structure of spin coated layers, J. Non-Cryst. Solids, 2015, vol. 426, pp. 125–131.

    Article  CAS  Google Scholar 

  12. Medvedev, A.M., Transport characteristics, structural features and electrode properties of selenide glasses containing copper, silver and lead, Cand. Sci. Dissertation, Leningrad, 1989.

  13. Bychkov, E.A., Ganzha, Yu.V., Grushko, Yu.S., Kovalev, M.F., Molkanov, L.I., Vlasov, Yu.G., and Wortman, G., 129I - Mossbauer spectroscopic study of iodide - containing chalcogenide glasses, Hyperfine Interact., 1990, vol. 55, no. 4, pp. 921–926.

    Article  CAS  Google Scholar 

  14. Wortmann, G., Tiedtke, M., Bychkov, E.A., and Grushko, Yu.S., 129I-Mossbauer study of diffusion effects in the superionic conductor Ag3Si, Hyperfine Interact., 1990, vol. 56, no. 3, pp. 1495–1502.

    Article  CAS  Google Scholar 

  15. Bychkov, E.A., Vlasov, Yu.G., Seleznev, B.L., and Semenov, V.G., Local environment of impurity iron atoms in dielectric and ion-conducting glasses of the silver-arsenic-selenium system, Sov. Phys. Solid State, 1989, vol. 31, no. 4, pp. 688–689.

    Google Scholar 

  16. Marchenko, A.V., Rabchanova, T.Yu., Seregin, P.P., Zharkoi, A.B., and Bobokhuzhaev, K.U., Origin of the electrical activity of iron atoms in vitreous arsenic selenide, Glass Phys. Chem., 2016, vol. 42, no. 3, pp. 246–250.

    Article  CAS  Google Scholar 

  17. Marchenko, A.V., Luzhkov, A.A., Rasnyuk, A.N., Seregin, N.P., and Seregin, P.P., Electron exchange between dopant iron sites in glass films of arsenic selenide, Glass Phys. Chem., 2017, vol. 43, no. 2, pp. 158–162.

    Article  CAS  Google Scholar 

  18. Mott, N.F. and Davis, E.A., Electronic Processes in Non-Crystalline Materials, Oxford: Clarendon, 1971.

    Google Scholar 

  19. Goodenough, J.B. and Fatsecs, G.A., Mössbauer 57Fe isomer shift as a messure of valence in mixed-valence iron sulfides, J. Solid State Chem., 1982, vol. 41, no. 1, pp. 1–22.

    Article  CAS  Google Scholar 

  20. Fatsecs, G.A. and Goodenough, J.B., Mössbauer 57Fe spectra exibiting 'ferrous character', J. Solid State Chem., 1980, vol. 33, no. 2, pp. 219–232.

    Article  Google Scholar 

  21. Lefevre, H.W., The Mössbauer effect in marcasite structure iron compound, J. Phys. Chem. Solids, 1966, vol. 27, no. 1, pp. 85–92.

    Article  Google Scholar 

  22. Phillips, J.C., Topology of covalent non-crystalline solids. I. Short range order in chalcogenide alloys, J. Non-Cryst. Solids, 1979, vol. 34, no. 1, pp. 153–181.

    Article  CAS  Google Scholar 

  23. Phillips, J.C., Topology of covalent non-crystalline solids. II. Medium range order in chalcogenide alloys and a-Si (Ge), J. Non-Cryst. Solids, 1981, vol. 43, no. 1, pp. 153–181.

    Article  Google Scholar 

  24. Phillips, J.C., Topology of covalent non-crystalline solids. III. Kinetic model of the glass transition, J. Non-Cryst. Solids, 1981, vol. 44, no. 1, pp. 17–30.

    Article  CAS  Google Scholar 

  25. Shahi, K. and Wagner, J.B., Enhanced ionic conduction in dispersed solid electrolyte systems (DSES) and/or multiphase systems: AgI-Al2O3, AgI-SiO2 and AgI-AgBr, J. Solid State Chem., 1982, vol. 42, no. 2, pp. 119–123.

    Article  Google Scholar 

  26. Nakamura, O. and Goodeough, J.B., Conductivity enhansment of lithium bromide monohydrate by Al2O3 particles, Solid State Ionics, 1982, vol. 7, no. 2, pp. 718–724.

    Google Scholar 

  27. Petry, W. and Vogl, G., Mössbauer study of location diffusion in an interstitial Ca.Ge, Z. Phys. B, 1982, vol. 45, pp. 207–213.

    CAS  Google Scholar 

  28. Heiming, A., Steinmetz, K.H., Vogl, G., and Yoshida, Y., Mössbauer studies on self-diffusion in pure iron, J. Phys. F, 1988, vol. 18, pp. 1491–1503.

    Article  CAS  Google Scholar 

  29. Vogl, G., Diffusion studies, Hyperfine Interact., 1990, vol. 53, pp. 197–212.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Baidakov.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baidakov, D.L., Lyubavina, A.P. & Ryseva, V.A. Mössbauer 57Fe and 129I Spectra, as Well as the Local Environment of Atoms, in Chalcogenide CuI–AgI–As2Se3 and CuI–PbI2–SbI3–As2Se3 Films Deposited from Glass Solutions in N-Butylamine. Glass Phys Chem 47, 441–445 (2021). https://doi.org/10.1134/S1087659621050059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659621050059

Keywords:

Navigation