Skip to main content
Log in

A Structural Molar Volume Model for Oxide Melts Part I: Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 Melts—Binary Systems

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A structural molar volume model was developed to accurately reproduce the molar volume of molten oxides. As the non-linearity of molar volume is related to the change in structure of molten oxides, the silicate tetrahedral Q-species, calculated from the modified quasichemical model with an optimized thermodynamic database, were used as basic structural units in the present model. Experimental molar volume data for unary and binary melts in the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 system were critically evaluated. The molar volumes of unary oxide components and binary Q-species, which are model parameters of the present structural model, were determined to accurately reproduce the experimental data across the entire binary composition in a wide range of temperatures. The non-linear behavior of molar volume and thermal expansivity of binary melt depending on SiO2 content are well reproduced by the present model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. 1. R. L. Lange and I. S. E. Carmichael, “Thermodynamic properties of silicate liquids with emphasis on density, thermal expansion and compressibility,” Reviews in Mineralogy and Geochemistry, vol. 24, pp. 25-64 (1990).

    Google Scholar 

  2. 2. Y. Bottinga and D. F. Weill, “Densities of liquid silicate systems calculated from partial molar volumes of oxide components,” American Journal of Science, vol. 269, pp. 169-182 (1970).

    Article  Google Scholar 

  3. 3. Y. Bottinga, D. Weill, and P. Richet, “Density calculations for silicate liquids. I. Revised method for aluminosilicate compositions,” Geochimica et Cosmochimica Acta, vol. 46, pp. 909-919 (1982).

    Article  Google Scholar 

  4. 4. Y. Bottinga, P. Richet, and D. F. Weill, “Calculation of the density and thermal expansion coefficient of silicate liquids,” Bulletin de Mineralogie, vol. 106, pp. 129-138 (1983).

    Google Scholar 

  5. 5. R. A. Lange and I. S. E. Carmichael, “Densities of Na2O-K2O-MgO-MgO-FeO-Fe2O3-Al3O3-TiO2-SiO2 liquids: New measurements and derived partial molar properties,” Geochimica et Cosmochimica Acta, vol. 51, pp. 2931-2946 (1987).

    Article  Google Scholar 

  6. 6. Q. Liu and R. A. Lange, “The partial molar volume and thermal expansivity of TiO2 in alkali silicate melts: Systematic variation with Ti coordination,” Geochimica et Cosmochimica Acta, vol. 65, pp. 2379-2393 (2001).

    Article  Google Scholar 

  7. 7. M. S. Ghiorso and V. C. Kress, “An equation of state for silicate melts. II. Calibration of volumetric properties at 105 Pa,” American Journal of Science, vol. 304, pp. 679-751 (2004).

    Article  Google Scholar 

  8. 8. E. F. Riebling, “Struture changes in the molten oxide system: Lead oxide-germanium dioxide,” Inorganic Chemistry, vol. 3, pp. 958-962 (1964).

    Article  Google Scholar 

  9. 9. H. Ito and T. Yanagase, “Studies on lead silicate melts,” Transactions of the Japan Insitute of Melts, vol. 1, pp. 115-120 (1960).

    Article  Google Scholar 

  10. 10. C. W. Bale, E. Bélisle, P. Chartrand, S. A. Decterov, G. Eriksson, K. Hack, I. H. Jung, Y. B. Kang, J. Melançon, A. D. Pelton, C. Robelin, and S. Petersen, “FactSage thermochemical software and databases — recent developments,” Calphad, vol. 33, pp. 295-311 (2009).

    Article  Google Scholar 

  11. 11. A. D. Pelton and M. Blander, “Thermodynamic analysis of ordered liquid solutions by a modified quasichemical approach - application to silicate slags,” Metallurgical and Materials Transactions B, vol. 17, pp. 805-815 (1986).

    Article  Google Scholar 

  12. W.-Y. Kim: Modelling Viscosity of Molten Slags and Glasses, École Polytechnique de Montréal, Ph.D. Thesis, 2011.

  13. I. H. Jung, S. A. Decterov, and A. D. Pelton: Physico-Chemical Modeling of Slag and Mattes for Ni and Co Production in Conference of Metallurgists, 2009, pp. 317–28.

  14. 14. J.-H. Park and P. C.-H. Rhee, “Ionic properties of oxygen in slag,” Journal of Non-Crystalline Solids, vol. 282, pp. 7-14 (2001).

    Article  Google Scholar 

  15. 15. B. O. Mysen and J. D. Frantz, “Silicate melts at magmatic temperatures: in situ structure determination to 1651° C and effect of temperature and bulk composition on the mixing behavior of structural units,” Contributions to Mineralogy and Petrology, vol. 117, pp. 1-14 (1994).

    Article  Google Scholar 

  16. 16. T. Maehara, T. Yano, S. Shibata, and M. Yamane, “Structure and phase transformation of alkali silicate melts analyzed by Raman spectroscopy,” Philosophical Magazine, vol. 84, pp. 3085-3099 (2004).

    Article  Google Scholar 

  17. 17. H. Maekawa, T. Maekawa, K. Kawamura, and T. Yokokawa, “The structural groups of alkali silicate glasses determined from silicon-29 MAS-NMR,” Journal of Non-Crystalline Solids, vol. 127, pp. 53-64 (1991).

    Article  Google Scholar 

  18. 18. W. E. Halter and B. O. Mysen, “Melt speciation in the system Na2O-SiO2,” Chemical Geology, vol. 213, pp. 115-123 (2004).

    Article  Google Scholar 

  19. 19. T. Yano, S. Shibata, and T. Maehara, “Structural equilibria in silicate glass melts investigated by Raman spectroscopy,” Journal of the American Ceramic Society, vol. 89, pp. 89-95 (2006).

    Article  Google Scholar 

  20. 20. J. Machacek and O. Gedeon, “Q-species in alkali-disilicate glasses,” Ceramics-Silikaty, vol. 47, pp. 45-49 (2003).

    Google Scholar 

  21. 21. L. R. Barrett and A. G. Thomas, “Surface tension and density measurements on molten glasses in the CaO-Al2O3-SiO2 system,” Journal of the Society of Glass Technology, vol. 43, pp. 179-190 (1959).

    Google Scholar 

  22. 22. L. Shartsis and S. Spinner, “Viscosity and density of molten optical glasses,” Journal of Research of the National Bureau of Standards (United States), vol. 46, pp. 176-194 (1951).

    Article  Google Scholar 

  23. 23. L. Segers, A. Fontana, and R. Winand, “Poids specifiques et volumes molaires de melanges d’oxydes fondus du systeme CaO-SiO2-MnO,” Electrochimica Acta, vol. 23, pp. 1275-1280 (1978).

    Article  Google Scholar 

  24. 24. J. O. M. Bockris, J. W. Tomlinson, and J. L. White, “The structure of the liquid silicates: Partial molar volumes and expansivities,” Transactions of the Faraday Society, vol. 52, pp. 299-310 (1956).

    Article  Google Scholar 

  25. 25. A. Adachi, K. Ogino, and H. Toritani, “The surface tension of molten silicates,” Technology Reports of the Osaka University, vol. 10, pp. 149-156 (1960).

    Google Scholar 

  26. 26. S. A. Nelson and I. S. E. Carmichael, “Partial molar volumes of oxide components in silicate liquids,” Contributions to Mineralogy and Petrology, vol. 71, pp. 117-124 (1979).

    Article  Google Scholar 

  27. 27. E. F. Riebling, “Structure of sodium aluminosilicate melts containing at least 50 mole % SiO2 at 1500C,” The Journal of Chemical Physics, vol. 44, pp. 2857-2865 (1966).

    Article  Google Scholar 

  28. 28. D. J. Stein, J. F. Stebbins, and I. S. E. Carmichael, “Density of molten sodium aluminosilicates,” Journal of the American Ceramic Society, vol. 69, pp. 396-399 (1986).

    Article  Google Scholar 

  29. 29. M. Hino, T. Ejima, and M. Kameda, “Surface tension and density of liquid lead silicate,” Journal of the Japan Institute of Metals, vol. 31, pp. 113-119 (1967).

    Google Scholar 

  30. 30. T. Kurasawa, T. Takahashi, K. Noda, H. Takeshita, S. Nasu, and H. Watanabe, “Thermal expansion of lithium oxide,” Journal of Nuclear Materials, vol. 107, pp. 334-336 (1982).

    Article  Google Scholar 

  31. 31. T. W. D. Farley, W. Hayes, S. Hull, M. T. Hutchings, M. Alba, and M. Vrtis, “Dynamical disorder at elevated temperature in lithium oxide,” Physica B, vol. 156-157, pp. 99-102 (1989).

    Article  Google Scholar 

  32. 32. W. Mark, J. Sandro, and A. M. Paul, “The construction and application of a fully flexible computer simulation model for lithium oxide,” Journal of Physics: Condensed Matter, vol. 16, pp. S2795-S2810 (2004).

    Google Scholar 

  33. 33.W. M. Haynes (2014) CRC Handbook of Chemistry and Physics, 95th Ed, Taylor & Francis, New York

    Google Scholar 

  34. 34. R. H. Lamoreaux and D. L. Hildenbrand, “High-temperature vaporization behavior of oxides. I. Alkali metal binary oxides,” Journal of Physical and Chemical Reference Data, vol. 13, pp. 151-173 (1984).

    Article  Google Scholar 

  35. 35. G. Fiquet, P. Richet, and G. Montagnac, “High-temperature thermal expansion of lime, periclase, corundum and spinel,” Physics and Chemistry of Minerals, vol. 27, pp. 103-111 (1999).

    Article  Google Scholar 

  36. 36. L. S. Dubrovinsky and S. K. Saxena, “Thermal expansion of periclase (MgO) and tungsten (W) to melting temperatures,” Physics and Chemistry of Minerals, vol. 24, pp. 547-550 (1997).

    Article  Google Scholar 

  37. 37. S. Hara and K. Ogino, “Density and surface tension of melts in the systems calcium fluoride-metal(M) oxide (M = magnesium, calcium, barium),” Nippon Kinzoku Gakkaishi, vol. 52, pp. 1098-1102 (1988).

    Google Scholar 

  38. 38. S. Hara, K. Irie, D. R. Gaskell, and K. Ogino, “Densities of melts in the iron(II) oxide-iron(III) oxide-calcium oxide and iron(II) oxide-iron(III) oxide-dicalcium silicate (2CaO.SiO2) systems,” Transactions of the Japan Institute of Metals, vol. 29, pp. 977-989 (1988).

    Article  Google Scholar 

  39. 39. S. Hara and K. Ogino, “Densities and surface tensions of melts in the system calcium fluoride-calcium oxide-silica,” Tetsu to Hagane, vol. 75, pp. 439-445 (1989).

    Google Scholar 

  40. 40. X. W. Sun, T. Song, Y. D. Chu, Z. J. Liu, Z. R. Zhang, and Q. F. Chen, “The high-pressure melting curve of CaO,” Solid State Communications, vol. 150, pp. 1785-1788 (2010).

    Article  Google Scholar 

  41. 41. A.-L. Leu, S.-M. Ma, and H. Eyring, “Properties of molten magnesium oxide,” Proceedings of the National Academy of Sciences of the United States of America, vol. 72, pp. 1026-1030 (1975).

    Article  Google Scholar 

  42. 42. P. Tangney and S. Scandolo, “Melting slope of MgO from molecular dynamics and density functional theory,” The Journal of Chemical Physics, vol. 131, pp. 124510-124516 (2009).

    Article  Google Scholar 

  43. 43. I. Suzuki, S.-I. Okajima, and K. Seya, “Thermal expansion of a single-crystal manganosite,” Journal of Physics of the Earth, vol. 27, pp. 63-69 (1979).

    Article  Google Scholar 

  44. 44. J. O. M. Bockris and G. W. Mellors, “Electric conductance in liquid lead silicates and borates,” The Journal of Physical Chemistry, vol. 60, pp. 1321-1328 (1956).

    Article  Google Scholar 

  45. 45. V. L. Zyazev and O. A. Esin, “Viscosity and density of the system V2O5-PbO,” Zhurnal Neorganicheskoi Khimii, vol. 3, pp. 1381-1385 (1958).

    Google Scholar 

  46. 46. B. M. Lepinskikh, O. A. Esin, and G. A. Teterin, “Surface tension and density of melts containing oxides of lead, vanadium, and silicon,” Zhurnal Neorganicheskoi Khimii, vol. 5, pp. 642-648 (1960).

    Google Scholar 

  47. 47. C. A. Sorrell, “Thermal expansion of tetragonal lead oxide,” Journal of the American Ceramic Society, vol. 53, pp. 641-644 (1970).

    Article  Google Scholar 

  48. 48. C. A. Sorrell, “Thermal expansion of orthorhombic lead monoxide,” Journal of the American Ceramic Society, vol. 53, pp. 552-554 (1970).

    Article  Google Scholar 

  49. 49. Y. V. Zubarev, V. I. Kostikov, B. S. Mitin, Y. A. Nagibin, and V. V. Nishcheta, “Properties of molten aluminum oxide,” Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy, vol. 5, pp. 1563-1565 (1969).

    Google Scholar 

  50. 50. V. P. Elyutin, B. S. Mitin, and Y. S. Anisimov, “Surface tension and density of alumina-magnesia and alumina-calcia melts,” Izvestiya Vysshikh Uchebnykh Zavedenii, Tsvetnaya Metallurgiya, vol. 17, pp. 42-44 (1974).

    Google Scholar 

  51. 51. E. E. Shpil’rain, K. A. Yakimovich, and A. F. Tsitsarkin, “Experimental study of the density of liquid alumina up to 2750.deg,” High Temperatures - High Pressures, vol. 5, pp. 191-198 (1973).

    Google Scholar 

  52. 52. B. Granier and S. Heurtault, “Method for measurement of the density of liquid refractories. Application to alumina and yttrium oxide,” Revue Internationale des Hautes Temperatures et des Refractaires, vol. 20, pp. 61-67 (1983).

    Google Scholar 

  53. 53. J. P. Coutures, J. C. Rifflet, P. Florian, and D. Massiot, “Thermal analysis and very high temperature 27Al NMR study of the solidification behavior in contactless conditions of liquid alumina: Effects of the melt temperature and oxygen partial pressure,” Revue Internationale des Hautes Temperatures et des Refractaires, vol. 29, pp. 123-142 (1994).

    Google Scholar 

  54. 54. B. Glorieux, F. Millot, J. C. Rifflet, and J. P. Coutures, “Density of superheated and undercooled liquid alumina by a contactless method,” International Journal of Thermophysics, vol. 20, pp. 1085-1094 (1999).

    Article  Google Scholar 

  55. 55. P.-F. Paradis, T. Ishikawa, Y. Saita, and S. Yoda, “Non-contact thermophysical property measurements of liquid and undercooled alumina,” Japan Society of Applied Physics, vol. 43, pp. 1496-1500 (2004).

    Article  Google Scholar 

  56. 56. J. J. Rasmussen, “Surface tension, density, and volume change on melting of alumina systems, chromia, and samaria,” Journal of the American Ceramic Society, vol. 55, pp. 326 (1972).

    Article  Google Scholar 

  57. 57. B. S. Mitin and Y. A. Nagibin, “Density of molten aluminum oxide,” Zhurnal Fizicheskoi Khimii, vol. 44, pp. 1325-1326 (1970).

    Google Scholar 

  58. 58. S. V. Stankus and P. V. Tyagelsky, “Thermal properties of Al2O3 in the melting region,” International Journal of Thermophysics, vol. 15, pp. 309-316 (1994).

    Article  Google Scholar 

  59. 59. P. Courtial and D. B. Dingwell, “Nonlinear composition dependence of molar volume of melts in the CaO-Al2O3-SiO2 system,” Geochimica et Cosmochimica Acta, vol. 59, pp. 3685-3695 (1995).

    Article  Google Scholar 

  60. 60. J. F. Bacon, A. A. Hasapis, and J. J. W. Wholley, “Viscosity and density of molten silica and high silica content glasses,” Physics and Chemistry of Glasses, vol. 1, pp. 90-98 (1960).

    Google Scholar 

  61. 61.M. Bjorn and R. Pascal (2005) Silica - A Deceitful Simplicity. In M. Bjorn and R. Pascal (eds) Silicate Glasses and Melts: Properties and Structure. Elsevier, New York, pp. 139-142

    Google Scholar 

  62. 62. R. Brückner, “Properties and structure of vitreous silica,” Journal of Non-Crystalline Solids, vol. 5, pp. 123-175 (1970).

    Article  Google Scholar 

  63. 63. P. Hudon, I.-H. Jung, and D. R. Baker, “Melting of β-quartz up to 2.0 GPa and thermodynamic optimization of the silica liquidus up to 6.0 GPa,” Physics of the Earth and Planetary Interiors, vol. 130, pp. 159-174 (2002).

    Article  Google Scholar 

  64. 64. L. Shartsis, S. Spinner, and W. Capps, “Density, expansivity, and viscosity of molten alkali silicates,” Journal of the American Ceramic Society, vol. 35, pp. 155-160 (1952).

    Article  Google Scholar 

  65. 65. E. P. Golovin and N. K. Dertev, “Density of melts in the sodium oxide-calcium oxide-silicon oxide system and analytical methods for its calculation,” Proizvodstvo i Issledovanie Stekla i Silikatnykh Materialov, vol. 1, pp. 44-49 (1969).

    Google Scholar 

  66. 66. L. Sasek and A. Lisy, “Structure and properties of silicate melts. I. Effect of the size of ions on glass melt density at high temperatures,” Sbornik Vysoke Skoly Chemicko-Technologicke v Praze, L: Chemie a Technologie Silikatu, vol. L2, pp. 165-215 (1972).

    Google Scholar 

  67. 67. L. Sasek and A. Lisy, “Structure and properties of silicate melts. II. Density of binary alkali-silica glass melts,” Sbornik Vysoke Skoly Chemicko-Technologicke v Praze, L: Chemie a Technologie Silikatu, vol. L2, pp. 217-254 (1972).

    Google Scholar 

  68. 68. G. Heidtkamp and K. Endell, “The dependence of density and viscosity on temperature in the system soda-silica,” Glastechnische Berichte, vol. 14, pp. 89-103 (1936).

    Google Scholar 

  69. 69. M. Coenen, “Density of cord glasses at high temperatures,” Glastechnische Berichte, vol. 39, pp. 81-89 (1966).

    Google Scholar 

  70. A. Din: Technische Universitaet Clausthal (Germany), Ph.D. Thesis, 1968.

  71. 71. V. I. Ezikov and S. K. Chuchmarev, “Density and surface tension in sodium oxide-silicon dioxide and sodium oxide-boron oxide systems at 1100.deg,” Zhurnal Fizicheskoi Khimii, vol. 46, pp. 2158 (1972).

    Google Scholar 

  72. 72. N. K. Dertev and E. P. Golovin, “Analytical method of calculation of density of a three component silicate melt,” Trudy Gor’kovskogo Politekhnicheskogo Instituta im. A. A. Zhdanova, vol. 29, pp. 27-30 (1973).

    Google Scholar 

  73. 73. D. B. Dingwell, M. Brearley, and J. E. Dickinson Jr, “Melt densities in the Na2O-FeO-Fe2O3-SiO2 system and the partial molar volume of tetrahedrally-coordinated ferric iron in silicate melts,” Geochimica et Cosmochimica Acta, vol. 52, pp. 2467-2475 (1988).

    Article  Google Scholar 

  74. 74. S. L. Webb, R. Knoche, and D. B. Dingwell, “Determination of silicate liquid thermal expansivity using dilatometry and calorimetry,” European Journal of Mineralogy, vol. 4, pp. 95-104 (1992).

    Article  Google Scholar 

  75. 75. P. Courtial, J. Gottsmann, A. Holzheid, and D. B. Dingwell, “Partial molar volumes of NiO and CoO liquids: implications for the pressure dependence of metal-silicate partitioning,” Earth and Planetary Science Letters, vol. 171, pp. 171-183 (1999).

    Article  Google Scholar 

  76. 76. J. W. Tomlinson, M. S. R. Heynes, and J. O. M. Bockris, “The structure of liquid silicates. Part 2.-Molar volumes and expansivities,” Transactions of the Faraday Society, vol. 54, pp. 1822-1833 (1958).

    Article  Google Scholar 

  77. 77. P. Courtial and D. B. Dingwell, “Densities of melts in the CaO-MgO-Al2O3-SiO2 system,” American Mineralogist, vol. 84, pp. 465-476 (1999).

    Article  Google Scholar 

  78. 78. K. Ono, K. Gunji, and T. Araki, “Surface tension of molten binary CaO-SiO2 slags,” Journal of the Japan Institute of Metals, vol. 33, pp. 299-304 (1969).

    Google Scholar 

  79. 79. V. I. Sokolov, S. I. Popel, and O. A. Esin, “Density and molar volume of slags,” Izvestiya Vysshikh Uchebnykh Zavedenii, Chernaya Metallurgiya, vol. 13, pp. 10-15 (1970).

    Google Scholar 

  80. 80. D. R. Gaskell and Y. E. Lee, “Densities and structures of melts in the system calcium oxide-iron(II, III) oxide-silicon dioxide,” Metallurgical Transactions, vol. 5, pp. 853-860 (1974).

    Article  Google Scholar 

  81. 81. T. Licko and V. Danek, “Densities of melts in the system calcium silicate-calcium magnesium silicate (CaMgSi2O6)-calcium magnesium silicate (Ca2MgSi2O7),” Physics and Chemistry of Glasses, vol. 23, pp. 67-71 (1982).

    Google Scholar 

  82. 82.A. M. Yakushev, V. M. Romashin, and N. V. Ivanova (1985) Izvestiya Vysshikh Uchebnykh Zavedenii, Chernaya Metallurgiya, 1:47-50

    Google Scholar 

  83. 83. Y. M. Gogiberidze, M. A. Kekelidze, and S. M. Mikiashvili, “Interfacial tension at the boundary between Fe-P alloys and MnO-SiO2 melts,” Soobshcheniya Akademii Nauk Gruzinskoi SSR, vol. 32, pp. 117-124 (1963).

    Google Scholar 

  84. 84. Y. Suginohara, T. Yanagase, and H. Ito, “The effects of oxide additions on the structure-sensitive properties of lead silicate melts,” Transactions of the Japan Institute of Metals, vol. 3, pp. 227-233 (1962).

    Article  Google Scholar 

  85. 85. K. A. Kostanyan and E. K. Karapetyan, “Density of molten glasses,” Armyanskii Khimicheskii Zhurnal, vol. 20, pp. 253-256 (1967).

    Google Scholar 

  86. 86. M. Hino, T. Ejima, and M. Kameda, “Surface tension, density and viscosity of PbO-Na2O-SiO2 ternary melts,” Journal of the Japan Institute of Metals, vol. 32, pp. 809-814 (1968).

    Google Scholar 

  87. 87. M. A. Sherstobitov, “Density and molar volumes of lead(II) oxide-silicon dioxide melts,” Zhurnal Fizicheskoi Khimii, vol. 43, pp. 3179-3180 (1969).

    Google Scholar 

  88. 88. T. Ejima, M. Hino, and M. Kameda, “Surface tension, density and viscosity of PbO-SiO2-Li2O ternary melts,” Journal of the Japan Institute of Metals, vol. 34, pp. 546-550 (1970).

    Google Scholar 

  89. 89. Y. Ouchi, T. Yoshida, and E. Kato, “Densities of ternary lead-silicate melts,” Journal of the Japan Institute of Metals, vol. 41, pp. 865-874 (1977).

    Google Scholar 

  90. K. Morinaga: Physical properties of PbO-B2O3-SiO2 glass melts, obtained from Interglad, 2000.

  91. 91. Y. S. Anisimov, E. F. Grits, and B. S. Mitin, “Surface tension and density of aluminum oxide-silicon dioxide and aluminum oxide-chromic oxide melts,” Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy, vol. 13, pp. 1444-1446 (1977).

    Google Scholar 

  92. 92. I. A. Aksay, J. A. Pask, and R. F. Davis, “Densities of SiO2-Al2O3 melts,” Journal of the American Ceramic Society, vol. 62, pp. 332-336 (1979).

    Article  Google Scholar 

  93. 93. V. D. Smolyarenko, A. M. Yakushev, and F. P. Edneral, “Density and surface tension of lime-alumina slags with additions of SiO2, MgO, and Na3AlF6,” Izvestiya Vysshikh Uchebnykh Zavedenii, Chernaya Metallurgiya, vol. 8, pp. 55-60 (1965).

    Google Scholar 

  94. 94. P. P. Evseev and A. F. Filippov, “Viscosity and surface tension of slags based on calcium fluoride,” Izvestiya Vysshikh Uchebnykh Zavedenii, Chernaya Metallurgiya, vol. 8, pp. 70-73 (1965).

    Google Scholar 

  95. 95. A. I. Bochorishvili and S. B. Yakobashvili, “Effect of metal oxide on the surface tension of lime-alumina slags,” Svarochnoe Proizvodstvo, vol. 1, pp. 13-15 (1968).

    Google Scholar 

  96. 96. V. V. Dymov and V. V. Baidov, “Measurement of the density of synthetic slag melts by the maximum pressure in a gas bubble method,” Sbornik Trudov Tsentral’nogo Nauchno-Issledovatel’skogo Instituta Chernoi Metallurgii, vol. 61, pp. 78-80 (1968).

    Google Scholar 

  97. 97. A. N. Sokolov, V. V. Baidov, and L. L. Kunin, “Velocity of ultrasound density, and surface tension as information on the structure of calcium oxide-alumina-silica system,” Fizicheskaya Khimiya i Elektrokhimiya Rasplavlennykh Solei i Shlakov, vol. No. 1, pp. 299-307 (1969).

    Google Scholar 

  98. 98. E. V. Krinochkin, K. T. Kurochkin, and P. V. Umrikhin, “Surface tension and density of oxide melts in the calcium oxide-silica-alumina system,” Fizicheskaya Khimiya Poverkhnostnykh Yavlenii v Rasplavakh, vol. 1, pp. 179-183 (1971).

    Google Scholar 

  99. 99. B. Sikora and M. Zielinski, “Density surface tension, viscosity, and electric conductivity of fused calcium oxide-alumina-calcium fluoride systems,” Hutnik, vol. 41, pp. 433-437 (1974).

    Google Scholar 

  100. 100. G. I. Zhmoidin, G. S. Smirnov, and V. N. Gladkii, “Effect of atmospheric composition on the density of calcium oxide-aluminum oxide melts,” Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy, vol. 13, pp. 552-553 (1977).

    Google Scholar 

  101. 101. M. Zielinski and B. Sikora, “Surface tension of the calcium oxide-alumina system with additions of silica, iron(III) oxide, calcium fluoride, sodium fluoride, and magnesia,” Prace Instytutu Metalurgii Zelaza im. Stanislawa Staszica, vol. 29, pp. 157-165 (1977).

    Google Scholar 

  102. 102. L. Shartsis and S. Spinner, “Surface tension of molten alkali silicates,” Journal of Research of the National Bureau of Standards (United States), vol. 46, pp. 385-390 (1951).

    Article  Google Scholar 

  103. International Glass Database System, INTERGLAD V.7, New Glass Forum, http://www.interglad.jp/interglad7/.

  104. 104. M. Hino, T. Ejima, and M. Kameda, “Surface tension, density and viscosity of PbO-K2O-SiO2 ternary melts,” Journal of the Japan Institute of Metals, vol. 33, pp. 617-622 (1969).

    Google Scholar 

  105. 105. T. Taniguchi, M. Okuno, and T. Matsumoto, “X-ray diffraction and EXAFS studies of silicate glasses containing Mg, Ca and Ba atoms,” Journal of Non-Crystalline Solids, vol. 211, pp. 56-63 (1997).

    Article  Google Scholar 

  106. 106. V. R. Mastelaro, E. D. Zanotto, N. Lequeux, and R. Cortes, “Relationship between short-range order and ease of nucleation in Na2Ca2Si3O9, CaSiO3 and PbSiO3 glasses,” Journal of Non-Crystalline Solids, vol. 262, pp. 191-199 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from Hyundai Steel, JFE Steel Corporation, Nippon Steel & Sumitomo Metal, Nucor Steel, Posco, RioTinto, RHI, RIST, Tata Steel Europe, Voestalpine, and the Natural Science and Engineering Research Council of Canada (NSERC) is gratefully acknowledged. One of the authors (E.T.) also acknowledges the scholarship from the Fonds de Recherche du Quebec - Nature et Technologies (FRQNT) supporting his master study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Ho Jung.

Additional information

Manuscript Submitted November 27, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thibodeau, E., Gheribi, A.E. & Jung, IH. A Structural Molar Volume Model for Oxide Melts Part I: Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 Melts—Binary Systems. Metall Mater Trans B 47, 1147–1164 (2016). https://doi.org/10.1007/s11663-015-0548-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0548-y

Keywords

Navigation