Skip to main content
Log in

Amination by nucleophilic substitution and addition in solution: Substituents effect on changes in activation parameters

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Changes in the activation parameters of amination along mechanisms S N 2, S N Ar, Ad N and in reactions with acyl group transfer may serve as an additional investigation method for these reactions in solution. The approximation utilizes the substituents effect in benzene and pyridine derivatives on the changes in the activation parameters ΔX (X = H, S, G) in the framework of equations of Hammett’s type for the estimation of the resulting reaction constants δΔX . The single linear dependences of the reaction constants of internal enthalpy δΔH int on the reaction constants δΔG and Hammett’s ρ show that the substituents effect in the leaving and non-leaving groups and in the nucleophiles on the amination mechanisms is governed by the δΔH int , when unique stage of the process determines its rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kirk and Othmer Encyclopedia of Chemical Technology, New York: Wiley, 2007, vol. 18, pp. 524, 682 (see also references therein); Lawrence, S.A., Amines: Synthesis, Properties and Application, Cambridge: Cambridge University, 2004.

  2. Smith, M.B. and March, J., March’s Advanced Organic Chemistry, New York: Wiley, 2007; Carey, F.A. and Sundbery, R.J., Adv. Org. Chem. A: Structure and Mechanisms, New York: Springer, 2007.

    Google Scholar 

  3. Williams, A., Concerted Organic and bio-organic mechanisms, Boca Raton: CRC Press, 2000.

    Google Scholar 

  4. Shaik S.S., Schlegel, H.B., and Wolfe, S. Theoretical Aspects of Physical Organic Chemistry, the SN2 Mechanism, New York: Wiley, 1992.

    Google Scholar 

  5. Pross, A., Theoretical and Physical Principles of Organic Reactivity, New York: Wiley, 1995; Anslyn, E.V. and Dougherty, D.A., Modern Physical Organic Chemistry, Sausalito, CA: University Sci. Books, 2006.

    Google Scholar 

  6. Lee, I., Chem. Soc. Rev., 1990, vol. 19, p. 317; Lee, I. and Sung, D.D., Curr. Org. Chem., 2004, vol. 8, p. 557; Castro, E.A., Chem. Rev., 1999, vol. 99, p. 3505; Bennet, A.J. and Brown, R.S., Comprehensive biological catalysis, Sinnott, M., Ed., New York: Academic Press, 1998, vol. 1, p. 293; Adler, M., Adler, S., and Boche, G., J. Phys. Org. Chem., 2005, vol. 18, p. 193; Terrier, F., Nucleophilic Aromatic Displacement: the Influence of the Nitro Group, New York: VCH Publ., 1991; Buncel, E., Dust, J.M., and Terrier, F., Chem. Rev., 1995, vol. 95, p. 2261; Vlasov, V.M., Russ. Chem. Rev., 2003, vol. 72, p. 681; Ji, P., Atherton, J., and Page, M.I., Org. Biomol. Chem., 2012, vol. 10, p. 5732; Bernasconi, C.F. and Rappoport, Z., Acc. Chem. Res., 2009, vol. 42, p. 993; Bernasconi, C.F. Tetrahedron, 1989, vol. 45, p. 4017.

    Article  CAS  Google Scholar 

  7. Lee, I., Chem. Soc. Rev., 1995, vol. 24, p. 223; Hengge, A.C., Acc. Chem. Res., 2002, vol. 35, p. 105; Simmon, E.M. and Hartwig, J.F., Angew. Chem., Int. Ed., 2012, vol. 51, p. 3066.

    Article  CAS  Google Scholar 

  8. Leffler, J.E. and Grunwald, E., Rates and Equilibria of Organic Reactions, New York-London: Wiley, 1963; Hammett, L.P., Physical Organic Chemistry, Reaction Rates, Equilibria and Mechanisms, New York: McGraw Hill, 1970; Johnson, C.D., The Hammett Equation, Camebridge, UK: Cambridge University Press, 1973; Williams, A. Free Energy Relationships in Organic and Bioorganic Chemistry, Cambridge, UK: RSC, 2003.

    Google Scholar 

  9. Ammal, S.C., Mishima, M., and Yamataka, H., J. Org. Chem., 2003, vol. 68, p. 7772; Itoh, S. and Yamataka, H., Chem. Eur. J., 2011, vol. 17, p. 1230; Itoh, S., Yoshimura, N., Sato, M., and Yamataka, H., J. Org. Chem., 2011, vol. 76, p. 8294.

    Article  CAS  Google Scholar 

  10. Vlasov, V.M., Russ. Chem. Rev., 2006, vol. 75, p. 765.

    Article  CAS  Google Scholar 

  11. Vlasov, V.M., J. Phys. Org. Chem., 2012, vol. 25, p. 296; Vlasov, V.M., New J. Chem., 2009, vol. 33, p. 501; Vlasov, V.M., J. Phys. Org. Chem., 2010, vol. 23, p. 468; Vlasov, V.M., New J. Chem., 2010, vol. 34, p. 1408; Vlasov, V.M., New J. Chem., 2010, vol. 34, p. 2962; Vlasov, V.M., Russ. J. Org. Chem., 2013, vol. 49, p. 391.

    Article  CAS  Google Scholar 

  12. Hepler, L.G., J. Am. Chem. Soc., 1963, vol. 85, p. 3089; Hepler, L.G., Can. J. Chem., 1971, vol. 49, p. 2803.

    Article  CAS  Google Scholar 

  13. Ji, P., Atherton, J., and Page, M.I., J. Org. Chem., 2011, vol. 76, p. 1425.

    Article  CAS  Google Scholar 

  14. Oh, H.K., Yang, J.H., Sung, D.D., and Lee, I., J. Chem. Soc., Perkin Trans. 2, 2000, p. 101; Oh, H.K., Kim, T.S., Lee, H.W., and Lee I., J. Chem. Soc., Perkin Trans. 2, 2002, p. 282; Oh, H.K., Kim, I.K., Lee, H.W., and Lee, I., J. Org. Chem., 2004, vol. 69, p. 3806; Oh, H.K., Kim, I.K., Sung, D.D., and Lee, I., Org. Biomol. Chem., 2004, vol. 2, p. 1213.

    Google Scholar 

  15. Oh, H.K., Lee, Y.H., and Lee, I., Int. J. Chem. Kinet., 2000, vol. 32, p. 131; Oh, H.K., Park, J.E., Sung, D.D., and Lee, I., J. Org. Chem., 2004, vol. 69, p. 3150.

    Article  CAS  Google Scholar 

  16. Koh, H.J., Kim, S.I., Lee, B.C., and Lee, I., J. Chem. Soc., Perkin Trans. 2, 1996, p. 1353; Oh, H.K., Yang, J.H., Cho, I.H., Lee, H.W., and Lee, I., Int. J. Chem. Kinet., 2000, vol. 32, p. 485; Koh, H.J., Shin, C.H., Lee, H.W., and Lee, I., J. Chem. Soc., Perkin Trans. 2, 1998, p. 1329; Lee, H.W., Yun, Y.-S., Lee, B.-S., Koh, H.J., and Lee, I., J. Chem. Soc., Perkin Trans. 2, 2000, p. 2302; Koh, H.J., Kim, S.K., Lee, H.W., and Lee, I., J. Chem. Soc., Perkin Trans. 2, 2001, p. 1753; Oh, H.K., Yang, J.H., Lee, H.W., and Lee, I., Bull. Korean Chem. Soc., 1999, vol. 20, p. 1418; Oh, H.K., Kim, S.K., and Lee, I., Bull. Korean Chem. Soc., 1999, vol. 20, p. 1017; Koh, H.J., Han, K.L., Lee, H.W., and Lee, I., J. Org. Chem., 2000, vol. 65, p. 4706.

    Google Scholar 

  17. Mancini, P.M.E., Martinez, R.D., Vottero, L.R., and Nudelman, N.S., J. Chem. Soc., Perkin Trans. 2, 1984, p. 1133; Mancini, P.M.E., Martinez, R.D., Vottero, L.R., and Nudelman, N.S., J. Chem. Soc., Perkin Trans. 2, 1987, p. 951.

    Google Scholar 

  18. Crampton, M.R., Emokpae, T.A., and Isanbor, C., Eur. J. Org. Chem., 2007, p. 1378; Isanbor, C. and Emokpae, T.A., Int. J. Chem. Kinet., 2008, 40, 125; Akinyele, E.T. and Onyido, I., J. Chem. Soc., Perkin Trans. 2, 1988, p. 1859.

    Google Scholar 

  19. Ji, P., Atherton, J., and Page, M.I., J. Org. Chem., 2011, vol. 76, p. 3286; Um, I.-H., Im, I.-H., Kang, J.-S., Bursey, S.S., and Dust, J.M., J. Org. Chem., 2012, vol. 77, p. 9738; Um, I.-H., Min, S.-W., and Dust, J.M., J. Org. Chem., 2007, vol. 72, p. 8797.

    Article  CAS  Google Scholar 

  20. Stegelmann, C., Andreasen, A., and Campbell, C.T., J. Am. Chem. Soc., 2009, vol. 131, p. 8077; Kozuch, S. and Martin, J.M.L., ChemPhys-Chem., 2011, vol. 12, p. 1413.

    Article  CAS  Google Scholar 

  21. Hansch, C., Leo, A., and Taft, R.W., Chem. Rev., 1991, vol. 91, p. 165.

    Article  CAS  Google Scholar 

  22. Ruff, F., Internet Electron. J. Mol. Des., 2004, vol. 3, p. 474; El Seoud, O.A., Ferreira, M., Rodrigues, W.A., and Ruasse, M.-F., J. Phys. Org. Chem., 2005, vol. 18, p. 173.

    CAS  Google Scholar 

  23. Exner, O., Prog. Phys. Org. Chem., 1973, vol. 10, p. 411.

    CAS  Google Scholar 

  24. Castro, E.A. and Santander, C.L., J. Org. Chem., 1985, vol. 50, p. 3595; Castro, E.A. and Valdivia, J.L., J. Org. Chem., 1986, vol. 51, p. 1668; Castro, E.A., Vivanco, M., Aguayo, R., and Santos, J.G., J. Org. Chem., 2004, vol. 69, p. 5399; Castro, E.A., Aguayo, R., Bessolo, J., and Santos, J.G. J. Org. Chem., 2005, vol. 70, p. 3530; Castro, E.A., Aguayo, R., Bessolo, J., and Santos, J.G., J. Phys. Org. Chem., 2006, vol. 19, p. 555; Castro, E.A., Acuňa, M., Soto, C., Trujillo, C., Vàsquez, B., and Santos, J.G., J. Phys. Org. Chem., 2008, vol. 21, p. 816; Castro, E.A., Bessolo, J., Aguayo, R., and Santos, J.G., J. Org. Chem., 2003, vol. 68, p. 8157; Castro, E.A., Aguayo, R., Bessolo, J., and Santos, J.G., J. Org. Chem., 2005, vol. 70, p. 7788; Castro, E.A., Aliaga, M., Campodónico, P.R., Cepeda, M., Contreras, R., and Santos, J.G., J. Org. Chem., 2009, vol. 74, p. 9173; Castro, E.A., Millán, D., Aguayo, R., Campodónico, P.R., and Santos, J.G., Int. J. Chem. Kinet., 2011, vol. 43, p. 687; Millán, D., Santos, J.G., and Castro, E.A., J. Phys. Org. Chem., 2012, vol. 25, p. 989; Castro, E.A., Aliaga, M.E., Gazitúa, M., and Santos, J.G., J. Phys. Org. Chem., 2012, vol. 25, p. 994; Castro, E.A., Ramos, M., and Santos, J.G., J. Org. Chem., 2009, vol. 74, p. 6374.

    Article  CAS  Google Scholar 

  25. Um, I.-H., Min, J.-S., Ahn, J.-A., and Hahn, H.-J., J. Org. Chem., 2000, vol. 65, p. 5659; Um, I.-H., Kim, K.-H., Park, H.-R., Fujio, M., and Tsuno, Y., J. Org. Chem., 2004, vol. 69, p. 3937; Um, I.-H., Lee, J.-Y., Lee, H.W., Nagano, Y., Fujio, M., and Tsuno, Y., J. Org. Chem., 2005, vol. 70, p. 4980; Um, I.-H., Lee, J.-Y., Ko, S.-H., and Bae, S.-K., J. Org. Chem., 2006, vol. 71, p. 5800; Um, I.-H., Jeon, S.-E., and Seok, J.-A., Chem. Eur. J., 2006, vol. 12, p. 1237; Um, I.-H., Lee, J.-Y., Fujio, M., and Tsuno, Y., Org. Biomol. Chem., 2006, vol. 4, p. 2979; Um, I.-H., and Bae, A.R., J. Org. Chem., 2012, vol. 77, p. 5781; Um, I.-H., Baek, M.-H., and Han, H.-J., Bull. Korean Chem. Soc., 2003, vol. 24, p. 1245; Um, I.-H., Hwang, S.-J., Baek, M.-H., and Park, E.J., J. Org. Chem., 2006, vol. 71, p. 9191.

    Article  CAS  Google Scholar 

  26. Yew, K.H., Koh, H.Y., Lee, H.W., and Lee, I., J. Chem. Soc., Perkin Trans. 2, 1995, p. 2263; Koh, H.J., Lee, J.-W., Lee, H.W., and Lee, I., Can. J. Chem. 1998, vol. 76, p. 710; Oh, H.K., Kim, S.K., Cho, I.H., Lee, H.W., and Lee, I., J. Chem. Soc., Perkin Trans. 2, 2000, p. 2306; Oh, H.K., Ha, J.S., Sung, D.D., and Lee, I., J. Org. Chem., 2004, vol. 69, p. 8219; Oh, H.K., Park, J.E., Sung, D.D., and Lee, I., J. Org. Chem., 2004, vol. 69, p. 9285; Oh, H.K., Oh, J.Y., Sung, D.D., and Lee, I., J. Org. Chem., 2005, vol. 70, p. 5624; Oh, H.K., Jin, Y.C., Sung, D.D., and Lee, I., Org. Biomol. Chem., 2005, vol. 3, p. 1240; Lee, I., Lee, H.W., and Yu, Y.-K., Bull. Korean Chem. Soc., 2003, vol. 24, p. 993; Koh, H.J., Han, K.I., Lee, H.W., and Lee, I., J. Org. Chem., 1998, vol. 63, p. 9834; Koh, H.J., Han, K.L., and Lee, I., J. Org. Chem., 1999, vol. 64, p. 4783; Oh, H.K., Ku, M.H., Lee, H.W., and Lee, I., J. Org. Chem., 2002, vol. 67, p. 8995; Koh, H.J., Kang, S.-J., Kim, C.J., Lee, H.W., and Lee, I., Bull. Korean Chem. Soc., 2003, vol. 24, p. 925.

    Google Scholar 

  27. Bernasconi, C.F., Michoff, M.E.Z., de Rossi, R.H., and Granados, A.M., J. Org. Chem., 2007, vol. 72, p. 1285; Bernasconi, C.F., Pérez-Lorenzo, M., and Codding, S.J., J. Org. Chem., 2007, vol. 72, p. 9456; Kondo, Y., Urade, M., Yamanishi, Y., and Chen, X., J. Soc. Perkin Trans. 2, 2002, p. 1449; Edwards, D.R., Montoya-Peleaz, P., and Crudden, C.M., Org. Lett., 2007, vol. 9, p. 5481.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Vlasov.

Additional information

Original Russian Text © V.M. Vlasov, 2014, published in Zhurnal Organicheskoi Khimii, 2014, Vol. 50, No. 5, pp. 637–645.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasov, V.M. Amination by nucleophilic substitution and addition in solution: Substituents effect on changes in activation parameters. Russ J Org Chem 50, 621–630 (2014). https://doi.org/10.1134/S1070428014050029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428014050029

Keywords

Navigation