Skip to main content
Log in

Nickel–Ceramic Electrodes with High Nickel Content for Solid Electrolyte Electrochemical Devices

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Composite powders (66 wt % NiO + 34 wt % Zr0.84Y0.16O1.92 were obtained according to the solution combustion synthesis technique by crystallization of nickel oxide particles on the surface of Zr0.84Y0.16O1.92particles. The samples pressed from powders after sintering and reduction in moist hydrogen had high electrical conductivity, more than 16 × 103 S cm–1 at room temperature. Impedance spectroscopic studies have shown that in a humid atmosphere of Ni – Zr0.84Y0.16O1.92, electrodes formed on the surface of a dense Zr0.84Y0.16O1.92 electrolyte have low electrochemical activity. The impregnation of the electrodes with a solution of cerium nitrate followed by thermolysis made it possible to increase the electrochemical activity of the electrode by two to three orders of magnitude. An analysis of the electrochemical impedance spectra through the calculation of the distribution function of the relaxation time showed that the rate of hydrogen oxidation at the electrodes is limited by surface–adsorption processes. After impregnation, the gas diffusion resistance significantly limits the electrode reaction rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Fernandes, M.D., Andrade, S.T.P., Bistritzki, V.N., Fonseca, R.M., Zacarias, L.G., Goncalves, H.N.C., Castro, A.F., Domingues, R.Z., Matencio, T., Int. J. Hydrogen Energy, 2018, vol. 43, pp. 16311–16333. https://doi.org/10.1016/j.ijhydene.2018.07.004

    Article  CAS  Google Scholar 

  2. Ramadhani, F., Hussain, M.A., Mokhlis, H., Hajimolana, S., Renew. Sust. Energ. Rev., 2017, vol. 76, pp. 460–484. https://doi.org/10.1016/j.rser.2017.03.052

    Article  Google Scholar 

  3. Wu, L., Zhao, L., Zhan, Z., and Xia, C., J. Power Sources, 2014, vol. 266, pp. 268–274. https://doi.org/10.1016/j.jpowsour.2014.05.055

    Article  CAS  Google Scholar 

  4. Beresnev, S.M., Bobrenok, O.F., Kuzin, B.L., Bogdanovich, N.M., Kurteeva, A.A., Osinkin, D.A., Vdovin, G.K., and Bronin, D.I., Russ. J. Electrochem., 2012, vol. 48, pp. 969–975. https://doi.org/10.1134/S1023193512100035

    Article  CAS  Google Scholar 

  5. Lei, L., Bai, Y., and Liu, J., J. Power Sources, 2014, vol. 248, pp. 1312–1319. https://doi.org/10.1016/j.jpowsour.2013.10.023

    Article  CAS  Google Scholar 

  6. Chen, X., Ni, W., Du, X., Sun, Z., Zhu, T., Zhong, Q., and Han, M., J. Mater. Sci. Tech., 2019, vol. 35, pp. 695–701. https://doi.org/10.1016/j.jmst.2018.10.015

    Article  CAS  Google Scholar 

  7. Timurkutluk, B., Celik, S., and Ucar, E., Ceram. Int., 2019, vol. 45, pp. 3192–3198. https://doi.org/10.1016/j.ceramint.2018.10.221

    Article  CAS  Google Scholar 

  8. Kurteeva, A.A, Beresnev, S.M., Osinkin, D.A., Kuzin, B.L., Vdovin, G.K., Zhuravlev, V.D., Bogdanovich, N.M., Bronin, D.I., Pankratov, A.A., and Yaroslavtsev ,I.Yu.. Russ. J. Electrochem., 2011, vol. 47, pp. 1381–1388. https://doi.org/10.1134/S102319351112007X

    Article  CAS  Google Scholar 

  9. Osinkin, D.A., Bronin, D.I., Beresnev, S.M., Bogdanovich, N.M., Zhuravlev, V.D., Vdovin, G.K., and Demyanenko, T.A., J. Solid State Electrochem., 2014, vol. 18, pp. 149–156. https://doi.org/10.1007/s10008-013-2239-4

    Article  CAS  Google Scholar 

  10. Osinkin, D.A., Bogdanovich, N.M., Beresnev, S.M., and Zhuravlev, V.D., J. Power Sources, 2015, vol. 288, pp. 20–25. https://doi.org/10.1016/j.jpowsour.2015.04.098

    Article  CAS  Google Scholar 

  11. Futamura, S., Muramoto, A., Tachikawa, Y., Matsuda, J., Lyth, S.M., Shiratori, Y., Taniguchi, S., and Sasaki, K., Int. J. Hydrogen Energy, 2019, vol. 44, pp. 8502–8518. https://doi.org/10.1016/j.ijhydene.2019.01.223

    Article  CAS  Google Scholar 

  12. Chen, J., Wan, D., Sun, X., Li, B., and Lu, M., Int. J. Hydrogen Energy, 2018, vol. 43, pp. 9770–9776. https://doi.org/10.1016/j.ijhydene.2018.03.223

    Article  CAS  Google Scholar 

  13. Osinkin, D.A., Kuzin, B.L., and Bogdanovich, N.M., Solid State Ionics, 2013, vol. 251, pp. 66–69. https://doi.org/10.1016/j.ssi.2013.03.012

    Article  CAS  Google Scholar 

  14. Papaefthimiou, V., Shishkin, M., Niakolas, D.K., Athanasiou, M., Law, Y.T., Arrigo, R., Teschner, D., Havecker, M., Knop-Gericke, A., Schlogl, R., Ziegler, T., Neophytides, S.G., and Zafeiratos, S., Adv. Energy Mater., 2013, vol. 3, pp. 762–769. https://doi.org/10.1002/aenm.201200727

    Article  CAS  Google Scholar 

  15. Khaliullin, S.M., Zhuravlev, V.D., and Bamburov, V.G., Int. J. Self-Propagating High-Temp. Synt., 2016, vol. 25, pp. 139–148. https://doi.org/10.3103/S1061386216030031

    Article  Google Scholar 

  16. Osinkin, D.A. and Kuzin, B.L., Electrochim. Acta, 2018, vol. 282, pp. 128–136. https://doi.org/10.1016/j.electacta.2018.06.039

    Article  CAS  Google Scholar 

  17. Vogler, M., Bieberle-Hutterb, A., Gauckler, L., Warnatz, J., and Bessler, W.G., J. Electrochem. Soc., 2009, vol. 156, pp. B663–B672. https://doi.org/10.1149/1.3095477

    Article  CAS  Google Scholar 

  18. Utz, A., Stormer, H., Leonide, A., Weber, A., and Ivers-Tiffee, E., J. Electrochem. Soc., 2010, vol. 157, pp. B920–B930. https://doi.org/10.1149/1.3383041

    Article  CAS  Google Scholar 

  19. Dasari, H.P., Park, S., Kim, J., Lee, J., Kim, B., Je, H., Lee, H., and Yoon, K., J. Power Sources, 2013, vol. 240, pp. 721–728. https://doi.org/10.1016/j.jpowsour.2013.05.033

    Article  CAS  Google Scholar 

  20. Schmidt, J., Berg, P., Schonleber, M., Weber, A., and Ivers-Tiffee, E., J. Power Sources, 2013, vol. 221, pp. 70–77. https://doi.org/10.1016/j.jpowsour.2012.07.100

    Article  CAS  Google Scholar 

  21. Boukamp, B.A., Electrochim. Acta, 2015, vol. 154, pp. 35–46. https://doi.org/10.1016/j.electacta.2014.12.059

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Osinkin.

Ethics declarations

ACNOWLEDGMENTS

The authors are grateful to A.S. Farlenkov for carrying out microscopic studies. This work was partly carried out using facilities of the shared access center “Composition of Compounds”, IHTE, UB RAS.

FUNDING

The work was financially supported by the Government of the Russian Federation, agreement no. 02.A03.21.0006 (Act 211). The synthesis of composite powders was carried out in accordance with the state assignment of the Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences (topic no. AAAA-A19-119031890026-6).

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osinkin, D.A., Zhuravlev, V.D. Nickel–Ceramic Electrodes with High Nickel Content for Solid Electrolyte Electrochemical Devices. Russ J Appl Chem 93, 299–304 (2020). https://doi.org/10.1134/S1070427220020202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220020202

Keywords

Navigation