Skip to main content
Log in

Thermally Expanded Graphite as Functional Material in the Technology of Electrode Material with Mixed Conductivity

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Methods of differential thermal analysis and cyclic voltammetry were used to examine the functional properties of thermally expanded graphite in an electrode material for electrochemical systems. This material contains platinum, carbon black, and proton-conducting polymer Nafion. It was shown that addition of thermally expanded graphite to the electrode material makes higher the thermal stability of Nafion. Under an electrochemical treatment, thermally expanded graphite compares well in stability against this treatment with the commonly used carbon black of the Vulcan XC-72 type. A mechanism is suggested for stabilizing the proton-conducting polymer Nafion in the presence of thermally expanded graphite. It was shown that thermally expanded graphite is promising for being used in the technology of electrode materials with mixed conductivity, which contain a proton-conducting polymer of the Nafion type, as a functional additive serving to improve the thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krasnova, A.O., Glebova, N.V., and Nechitailov, A.A., Russ. J. Appl. Chem., 2016, vol. 89, no. 6, pp. 916–920.

    Article  CAS  Google Scholar 

  2. Glebova, N.V., Nechitailov, A.A., Krasnova, A.O., Tomasov, A.A., and Zelenina, N.K., Russ. J. Electrochem., 2017, vol. 53, no. 2, pp. 205–209.

    Article  CAS  Google Scholar 

  3. Glebova, N.V., Nechitailov, A.A., Krasnova, A.O., Tomasov, A.A., and Zelenina, N.K., Russ. J. Appl. Chem., 2015, vol. 58, no. 5, pp. 769–774.

    Article  CAS  Google Scholar 

  4. Krasnova, A.O., Glebova, N.V., Zhilina, D.V., and Nechitailov, A.A., Russ. J. Appl. Chem., 2017, vol. 90, no. 3, pp. 361–368.

    Article  CAS  Google Scholar 

  5. Arie Borenstein, Ortal Hanna, Ran Attias, Shalom Luski, Thierry Brousse, and Doron Aurbach, J. Mater. Chem. A, 2017, no. 5, pp. 12653–12672.

    Google Scholar 

  6. Sharma, S. and Pollet, B.G., J. Power Sources, 2012, vol. 208, pp. 96–119.

    Article  CAS  Google Scholar 

  7. Glebova, N.V., Nechitailov, A.A., Terukova, E.E., Terukov, E.I., Kukushkina, Yu.A., and Filippov, A.K., Al’tern. Energ. Ekol., 2011, no. 9 (101), pp. 83–91.

    Google Scholar 

  8. Nechitailov, A.A., Glebova, N.V., Krasnova, A.O., Tomasov, A.A., and Zelenina, N.K., Tech. Phys., 2015, vol. 60, no. 11, pp. 1670–1676.

    Article  CAS  Google Scholar 

  9. Jun Yang, Tsuyohiko Fujigaya, and Naotoshi Nakashima, Sci. Rep., 2017, vol. 7, pp. 45384.

    Google Scholar 

  10. Handbook of Ecomaterials, Myriam, L., Martínez, T., Kharissova, O.V., and Kharisov, B.I., Eds., Cham: Springer, 2018.

    Google Scholar 

  11. Pushkarev, A.S., Pushkareva, I.V., Grigoriev, S.A., Kalinichenko, V.N., Presniakov, M.Yu., and Fateev, V.N., Int. J. Hydrogen Energy, 2015, vol. 40, pp. 14492–14497.

    Article  CAS  Google Scholar 

  12. Electrocatalysis in Fuel Cells, Minhua Shao, Ed., London: Springer, 2013.

  13. Ramesh Karunagaran, Tran Thanh Tung, Cameron Shearer, Diana Tran, Campbell Coghlan, Christian Doonan, and Dusan Losic, Materials, 2017, vol. 10, p. 921.

    Google Scholar 

  14. Sarapuu, A., Kibena-Põldsepp, E., Borghei, M., and Tammeveski, K., J. Mater. Chem. A, 2018, vol. 6, pp. 776–804.

    Article  CAS  Google Scholar 

  15. Zabrodskii, A.G. Glebova, N.V., Nechitailov, A.A., Terukova, E.E., Terukov, E.I., Tomasov, A.A., and Zelenina, N.K., Tech. Phys. Lett., 2010, vol. 36, no. 12, pp. 1112–1114.

    Article  CAS  Google Scholar 

  16. Glebova, N.V., Nechitailov, A.A., and Gurin, V.N., Tech. Phys. Lett., 2011, vol. 37, no. 7, pp. 661–663.

    Article  CAS  Google Scholar 

  17. Nechitailov, A.A. and Glebova, N.V., Russ. J. Electrochem., 2014, vol. 50, no. 8, pp. 751–755.

    Article  CAS  Google Scholar 

  18. Matos, B., Aricó, E., Linardi, M., Ferlauto, A., Santiago, E., and Fonseca, F., J. Therm. Anal. Calorim., 2009, vol. 97 (2), pp. 591–594.

    Article  CAS  Google Scholar 

  19. Cele, N.P. and Ray, S.S., J. Mater. Res., 2015, vol. 30 (1), pp. 66–78.

    Article  CAS  Google Scholar 

  20. Cele, N.P., Ray, S.S., Pillai, S.K. Ndwandwe, M., Nonjola, S., Sikhwivhilu, L., and Mathe, M.K., Fuel Cells, 2010, vol. 10 (1), pp. 64–71.

    CAS  Google Scholar 

  21. Lage, L.G., Delgado, P.G., and Kawano, Y., J. Therm. Anal. Calorim., 2004, vol. 75, pp. 521–530.

    Article  CAS  Google Scholar 

  22. Baturina, O.A., Aubuchon, S., and Wynne, K., J. Chem. Mater., 2006, vol. 18, pp. 1498–1504.

    Article  CAS  Google Scholar 

  23. Wilkie, C.A., Thomsen, J.R., and Mittleman, M.L., Appl. Polym. Sci., 1991, vol. 42, no. 4, pp. 901–909.

    Article  CAS  Google Scholar 

  24. Feldheim, D.L., Lawson, D.R., and Martin, C.R., J. Polym. Sci., B: Polym. Phys., 1993, vol. 31, pp. 953–957.

    Article  CAS  Google Scholar 

  25. RF Patent 2 581 382 (publ. 2016).

  26. Litster, S. and McLean, G., J. Power Sources, 2004, vol. 130, pp. 61–76.

    Article  CAS  Google Scholar 

  27. Kachala, V.V., Khemchyan, L.L., Kashin, A.S., Orlov, N.V., Grachev, A.A., Zalessky, S.S., and Ananikov, V.P., Russ. Chem. Rev., 2013, vol. 82, pp. 648–685.

    Article  CAS  Google Scholar 

  28. Kashin, A.S. and Ananikov, V.P., Russ. Chem. Bull., Int. Ed., 2011, vol. 60, pp. 2602–2607.

    Article  CAS  Google Scholar 

  29. Yoda, T., Uchida, H., and Watanabe, M., Electrochim. Acta, 2007, vol. 52, pp. 5997–6005.

    Article  CAS  Google Scholar 

  30. Nechitailov, A.A. and Glebova, N.V., Elektrokhim. Energ., 2013, vol. 13, pp. 192–200.

    Google Scholar 

  31. Nechitailov, A.A. and Glebova, N.V., Russ. J. Electrochem., 2014, vol. 45, no. 4, pp. 751–755.

    Article  CAS  Google Scholar 

  32. Handbook of Fuel Cells–Fundamentals, Technology and Applications, Vielstich, W., Gasteiger, H.A., and Lamm, A., Eds., Chichester: John Wiley and Sons, 2003.

    Google Scholar 

  33. Polymer Electrolyte Fuel Cell Degradation, Mench, M.M., Kumbur, E.C., and Veziroglu, T.N., Eds., Boston: Acad. Press, 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nechitailov.

Additional information

Original Russian Text © N.V. Glebova, A.O. Krasnova, A.A. Nechitailov, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 8, pp. 1111−1121.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glebova, N.V., Krasnova, A.O. & Nechitailov, A.A. Thermally Expanded Graphite as Functional Material in the Technology of Electrode Material with Mixed Conductivity. Russ J Appl Chem 91, 1262–1271 (2018). https://doi.org/10.1134/S1070427218080037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218080037

Keywords

Navigation