Skip to main content
Log in

Capacitive behavior of highly-oxidized graphite

  • Research Article
  • Published:
Materials Science-Poland

Abstract

Capacitive behavior of a highly-oxidized graphite is presented in this paper. The graphite oxide was synthesized using an oxidizing mixture of potassium chlorate and concentrated fuming nitric acid. As-oxidized graphite was quantitatively and qualitatively analyzed with respect to the oxygen content and the species of oxygen-containing groups. Electrochemical measurements were performed in a two-electrode symmetric cell using KOH electrolyte.

It was shown that prolonged oxidation causes an increase in the oxygen content while the interlayer distance remains constant. Specific capacitance increased with oxygen content in the electrode as a result of pseudo-capacitive effects, from 0.47 to 0.54 F/g for a scan rate of 20 mV/s and 0.67 to 1.15 F/g for a scan rate of 5 mV/s. Better cyclability was observed for the electrode with a higher oxygen amount.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brodie B.C., Philos. T. R. Soc. A, 149 (1859), 249.

    Article  Google Scholar 

  2. Staudenmaier L., Ber. Dtsch. Chem. Ges., 31 (1898), 1481.

    Article  Google Scholar 

  3. Hummers W.S., Offeman R.E., J. Am. Chem. Soc., 80 (1958), 1339.

    Article  Google Scholar 

  4. Jeong H.-K., Lee Y.P., Lahaye R.J.W.E., Park M.-H., An K.H., Kim I.J., Yang C.-W., Park C.Y., Ruoff R.S., Lee Y.H., J. Am. Chem. Soc., 130 (2008), 1362.

    Article  Google Scholar 

  5. Wang H., Hu Y.H., Ind. Eng. Chem. Res., 50 (2011), 6132.

    Article  Google Scholar 

  6. Seredych M., Bandosz T.J., J. Phys. Chem. C, 111 (2007), 15596.

    Article  Google Scholar 

  7. Ambrosi A., Bonanni A., Sofer Z., Cross J.S., Pumera M., Chem.-Eur. J., 17 (2011), 10763.

    Article  Google Scholar 

  8. Hamwi A., Marchand V., J. Phys. Chem. Solids, 57 (1996), 867.

    Article  Google Scholar 

  9. Ra E.J., Tran M.-H., Yang S., Kim T.-H., Yang C.-S., Chung Y.-J., Lee Y.-K., Kim I.-J., Jeong H.-K., Curr. Appl. Phys., 14 (2014), 82.

    Article  Google Scholar 

  10. Szabo T., Berkesi O., Forgo P., Josepovits K., Sanakis Y., Petridis D., Dekany I., Chem. Mater., 18 (2006), 274.

    Article  Google Scholar 

  11. Lerf A., He H., Forster M., Klinowski J., J. Phys. Chem. B, 102 (1998), 4477.

    Article  Google Scholar 

  12. Matuyama E., J. Phys. Chem., 58 (1954), 215.

    Article  Google Scholar 

  13. Mcallister M.J., Li J.-L., Adamson D.H., Schniepp H.C., Abdala A.A., Liu J., Herreraalonso M., Milius D.L., Car R., Prud’homme R.K., Aksay I.A., Chem. Mater., 19 (2007), 4396.

    Article  Google Scholar 

  14. Talyzin A.V., Szabo T., Dekany I., Langenhorst F., Sokolov P.S., Solozhenko V.L., J. Phys. Chem. C, 113 (2009), 11279.

    Article  Google Scholar 

  15. Dimiev A., Kosynkin D.V., Alemany L.B., Chaguine P., Tour J.M., J. Am. Chem. Soc., 134 (2012), 2815.

    Article  Google Scholar 

  16. Chua C.K., Sofer Z., Pumera M., Chem.-Eur. J., 18 (2012), 13453.

    Article  Google Scholar 

  17. Fan Z.-J., Kai W., Yan J., Wei T., Zhi L.-J., Feng J., Ren Y., Song L.-P., We F., ACS Nano, 5 (2011), 191.

    Article  Google Scholar 

  18. Xu B., Yue S., Sui Z., Zhang X., Hou S., Cao G., Yang Y., Energ. Environ. Sci., 4 (2011), 2826.

    Article  Google Scholar 

  19. Kim I.-J., Yang S., Jeon M.-J., Moon S.-I., Kim H.-S., Lee Y.-P., An K.-H., Lee Y.-H., J. Power Sources, 173 (2007), 621.

    Article  Google Scholar 

  20. Buglione L., Chng E.L.K., Ambrosi A., Sofer Z., Pumera M., Electrochem. Commun., 14 (2012), 5.

    Article  Google Scholar 

  21. Frackowiak E., Khomenko V., Jurewicz K., Lota K., Beguin F., J. Power Sources, 153 (2006), 413.

    Article  Google Scholar 

  22. Chen Y., Zhang X., Zhang D., Yu P., Ma Y., Carbon, 49 (2011), 573.

    Article  Google Scholar 

  23. Portet C., Taberna P.L., Simon P., Labertyrobert C., Electrochim. Acta, 49 (2004), 905.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateusz Ciszewski.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciszewski, M., Mianowski, A. Capacitive behavior of highly-oxidized graphite. Mater Sci-Pol 32, 307–314 (2014). https://doi.org/10.2478/s13536-013-0200-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13536-013-0200-y

Keywords

Navigation