Skip to main content
Log in

Molecular Layer Deposition and Thermal Transformations of Titanium(Aluminum)-Vanadium Hybrid Organic-Inorganic Films

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

In this work Molecular layer deposition (MLD) technique used to synthesize titanium-vanadium (TiV x C y O z ) and aluminum-vanadium (AlV x C y O z ) hybrid organic-inorganic films via alternating surface reactions of titanium tetrachloride (or trimethylaluminum), vanadium oxochloride, and ethylene glycol. Using in situ monitoring it was found that the surface reactions were self-limiting at temperatures of 90 and 115°C. The coating thickness per molecular layer deposition cycle (growth rate) at 115°C on a silicon substrate varied from 5.8 to 11.4 Å/cycle, and the film densities, from 1.7 to 2.0 g cm–3. An analysis of the samples obtained at 115°C revealed their amorphous structure. A thermal treatment of titanium-vanadium films at 450°C in air resulted in formation of highly structured coatings. These coatings were composed of nanowires of single-crystal vanadium oxide (V2O5) and mixed nanostructures of titanium and vanadium oxides. Increase in thermal treatment temperature to 500°C resulted in elongation of the V2O5 nanowires up to tens of micrometers and in their separation from the substrate. A thermal treatment of aluminum-vanadium films in air resulted in formation of a low-density film. Pyrolysis of the films in an inert gas yielded composite coatings containing domains of graphitized carbon. These films can be potentially useful in modern devices for energy storage, electronics, medicine and other promising fields of technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malygin, A.A., Drozd, V.E., Malkov, A.A., and Smirnov, V.M., Chem. Vapor. Depos., 2015, vol. 21, nos. 10–12, pp. 216–240.

    Article  CAS  Google Scholar 

  2. George, S.M., Chem. Rev., 2010, vol. 110, no. 1, pp. 111–131.

    Article  CAS  Google Scholar 

  3. George, S.M., Yoon, B., and Dameron, A.A., Accounts Chem. Res., 2009, vol. 42, no. 4, pp. 498–508.

    Article  CAS  Google Scholar 

  4. Gregorczyk, K. and Knez, M., Prog. Mater. Sci., 2016, vol. 75, pp. 1–37.

    Article  CAS  Google Scholar 

  5. Lee, B.H., Yoon, B., Abdulagatov, A.I., et al., Adv. Funct. Mater., 2013, vol. 23, no. 5, pp. 532–546.

    Article  CAS  Google Scholar 

  6. Sundberg, P. and Karppinen, M., Beilstein J. Nanotech., 2014, vol. 5, pp. 1104–1136.

    Article  CAS  Google Scholar 

  7. Abdulagatov, A.I., Terauds, K.E., Travis, J.J., et al., J. Phys. Chem. C, 2013, vol. 117, no. 34, pp. 17442–17450.

    Article  CAS  Google Scholar 

  8. Liang, X.H., Yu, M., Li, J.H., et al., Chem. Commun., 2009, vol. 46, pp. 7140–7142.

    Article  CAS  Google Scholar 

  9. Qin, Y., Yang, Y., Scholz, R., et al., Nano Lett., 2011, vol. 11, no. 6, pp. 2503–2509.

    Article  CAS  PubMed  Google Scholar 

  10. Piper, D.M., Travis, J.J., Young, M., et al., Adv. Mater., 2014, vol. 26, no. 10, pp. 1596–1601.

    Article  CAS  PubMed  Google Scholar 

  11. Ban, C.M. and George, S.M., Adv. Mater. Interfaces, 2016, vol. 3, no. 21, p. 1600762.

    Article  CAS  Google Scholar 

  12. Van de Kerckhove, K., Mattelaer, F., Deduytsche, D., et al., Dalton T, 2016, vol. 45, no. 3, pp. 1176–1184.

    Article  CAS  Google Scholar 

  13. Yu, D., Yang, Y.Q., Chen, Z., et al., Opt. Commun., 2016, vol. 362, pp. 43–49.

    Article  CAS  Google Scholar 

  14. Gould, T.D., Izar, A., Weimer, A.W., et al., ACS Catal., 2014, vol. 4, no. 8, pp. 2714–2717.

    Article  CAS  Google Scholar 

  15. Yu, M.A., Funke, H.H., Noble, R.D., and Falconer, J.L., J. Am. Chem. Soc., 2011, vol. 133, no. 6, pp. 1748–1750.

    Article  CAS  PubMed  Google Scholar 

  16. Kao, C.Y., Li, B., Lu, Y., et al., J. Mater. Chem. C, 2014, vol. 2, no. 30, pp. 6171–6176.

    Article  CAS  Google Scholar 

  17. Smirnov, V.M., Zemtsova, E.G., Belikov, I.L., et al., Dokl. Akad. Nauk, 2007, vol. 413, no. 6, pp. 776–780

    Google Scholar 

  18. Smirnov, V.M., Zemtsova, E.G., Belikov, A.A., et al., Dokl. Phys. Chem., 2007, vol. 413, pp. 95–98).

    Article  CAS  Google Scholar 

  19. Higgs, D.J., University of Colorado at Boulder, U.S.A., 2016.

    Google Scholar 

  20. Masih, D., Yoshitake, H., and Izumi, Y., Appl. Catal., A, 2007, vol. 325, no. 2, pp. 276–282.

    Article  CAS  Google Scholar 

  21. Klosek, S. and Raftery, D., J. Phys. Chem. B, 2001, vol. 105, no. 14, pp. 2815–2819.

    Article  CAS  Google Scholar 

  22. Lee, K. and Cao, G.Z., J. Phys. Chem. B, 2005, vol. 109, no. 24, pp. 11880–11885.

    Article  CAS  PubMed  Google Scholar 

  23. Kurttepeli, M., Deng, S., Mattelaer, F., et al., ACS Appl. Mater. Int., 2017, vol. 9, no. 9, pp. 8055–8064.

    Article  CAS  Google Scholar 

  24. Takahashi, K., Wang, Y., Lee, K., and Cao, G., Appl. Phys. A: Mater., 2006, vol. 82, no. 1, pp. 27–31.

    Article  CAS  Google Scholar 

  25. Weckhuysen, B.M. and Keller, D.E., Catal. Today, 2003, vol. 78, nos. 1–4, pp. 25–46.

    Article  CAS  Google Scholar 

  26. Van de Kerckhove, K., Mattelaer, F., Dendooven, J., and De Tavernier, C., Dalton T, 2017, vol. 46, no. 14, pp. 4542–4553.

    Google Scholar 

  27. Abdulagatov, A.I., Hall, R.A., Sutherland, J.L., et al., Chem. Mater., 2012, vol. 24, no. 15, pp. 2854–2863.

    Article  CAS  Google Scholar 

  28. Dameron, A.A., Seghete, D., Burton, B.B., et al., Chem. Mater., 2008, vol. 20, no. 10, pp. 3315–3326.

    Article  CAS  Google Scholar 

  29. Elam, J.W., Groner, M.D., and George, S.M., Rev. Sci. Instrum., 2002, vol. 73, no. 8, pp. 2981–2987.

    Article  CAS  Google Scholar 

  30. Seghete, D., Hall, R.A., Yoon, B., and George, S.M., Langmuir, 2010, vol. 26, no. 24, pp. 19045–19051.

    Article  CAS  PubMed  Google Scholar 

  31. Wilson, C.A., Grubbs, R.K., and George, S.M., Chem. Mater., 2005, vol. 17, no. 23, pp. 5625–5634.

    Article  CAS  Google Scholar 

  32. Drake, N.L. and Smith, T.B., J. Am. Chem. Soc., 1930, vol. 52, pp. 4558–4566.

    Article  CAS  Google Scholar 

  33. Minachev, K.M., Antoshin, G.V., Klissurski, D.G., et al., React. Kinet. Catal. Lett., 1979, vol. 10, no. 2, pp. 163–167.

    Article  CAS  Google Scholar 

  34. HSC Chemistry 2002, Version 5.1.

  35. Maly gin, A.A., Russ. J. Gen. Chem., 2002, vol. 72, no. 4, pp. 575–589.

    Article  CAS  Google Scholar 

  36. Barin, I. and Platzki, G., Thermochemical Data of Pure Substances, Weinheim: VCH, 1995, 3rd ed.

    Book  Google Scholar 

  37. Tawfik, W.Y. and Teja, A.S., Chem. Eng. Sci., 1989, vol. 44, no. 4, pp. 921–923.

    Article  CAS  Google Scholar 

  38. Groner, M.D., Fabreguette, F.H., Elam, J.W., and George, S.M., Chem. Mater., 2004, vol. 16, no. 4, pp. 639–645.

    Article  CAS  Google Scholar 

  39. Piercy, B.D., Leng, C.Z., and Losego, M.D., J. Vac. Sci. Technol. A, 2017, vol. 35, no. 3, 03E107.

    Article  CAS  Google Scholar 

  40. George, S.M., Lee, B.H., Yoon, B., et al., J. Nanosci. Nanotechnol., 2011, vol. 11, no. 9, pp. 7948–7955.

    Article  CAS  PubMed  Google Scholar 

  41. CRC Handbook of Chemistry and Physics. CRC Press, 2007, 88th ed.

  42. Ishchuk, S., Taffa, D.H., Hazut, O., et al., ACS Nano, 2012, vol. 6, no. 8, pp. 7263–7269.

    Article  CAS  PubMed  Google Scholar 

  43. Sarkar, D., Ishchuk, S., Taffa, D.H., et al., J. Phys. Chem. C, 2016, vol. 120, no. 7, pp. 3853–3862.

    Article  CAS  Google Scholar 

  44. Su, Q., Liu, X.Q., Ma, H.L., et al., J. Solid-State Electron Devices, 2008, vol. 12, nos. 7–8, pp. 919–923.

    Article  CAS  Google Scholar 

  45. Zhang, J., Xu, Q., Feng, Z.C., and Li, C., Nanostruct. Sci. Technol., 2010, pp. 153–184.

    Google Scholar 

  46. Habel, D., Goerke, O., Tovar, M., et al., J. Phase Equilib. Diffus., 2008, vol. 29, no. 6, pp. 482–487.

    Article  CAS  Google Scholar 

  47. Ostermann, R., Li, D., Yin, Y.D., et al., Nano Lett., 2006, vol. 6, no. 6, pp. 1297–1302.

    Article  CAS  PubMed  Google Scholar 

  48. Zou, C.W., Yan, X.D., Patterson, D.A., et al., CrystEng- Comm, 2010, vol. 12, no. 3, pp. 691–693.

    Article  CAS  Google Scholar 

  49. Vejux, A. and Courtine, P., J. Solid State Chem., 1978, vol. 23, nos. 1–2, pp. 93–103.

    Article  CAS  Google Scholar 

  50. Vejux, A. and Courtine, P., J. Solid State Chem., 1986, vol. 63, no. 2, pp. 179–190.

    Article  CAS  Google Scholar 

  51. Glushenkov, A.M., Stukachev, V.I., Hassan, M.F., et al., Cryst. Growth Des., 2008, vol. 8, no. 10, pp. 3661–3665.

    Article  CAS  Google Scholar 

  52. Overbury, S.H., Bertrand, P.A., and Somorjai, G.A., Chem. Rev., 1975, vol. 75, no. 5, pp. 547–560.

    Article  CAS  Google Scholar 

  53. Haber, J., Pure Appl. Chem., 1984, vol. 56, no. 12, pp. 1663–1676.

    Article  CAS  Google Scholar 

  54. Haber, J., Machej, T., and Czeppe, T., Surf. Sci., 1985, vol. 151, no. 1, pp. 301–310.

    Article  CAS  Google Scholar 

  55. Haber, J., Catal. Today, 2009, vol. 142, nos. 3–4, pp. 100–113.

    Article  CAS  Google Scholar 

  56. Wren, A.W., Adams, B.M., Pradhan, D., et al., Mater. Chem. Phys., 2014, vol. 144, no. 3, pp. 538–546.

    Article  CAS  Google Scholar 

  57. Livage, J., Materials, 2010, vol. 3, no. 8, pp. 4175–4195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dabrowska, G., Tabero, P., and Kurzawa, M., J. Phase Equilib. Diffus., 2009, vol. 30, no. 3, pp. 220–229.

    Article  CAS  Google Scholar 

  59. Knozinger, H. and Taglauer, E., Specialist Periodical Reports, Catalysis, Sanjay, K., Agarwal, J., and Spivey, J., Eds., Royal Soc. Chem., 1993, vol. 10.

  60. Haber, J., Machej, T., Serwicka, E.M., and Wachs, I.E., Catal. Lett., 1995, vol. 32, nos. 1–2, pp. 101–114.

    Article  CAS  Google Scholar 

  61. Stander, F. and Vanvuuren, C.P., J. Thermochim. Acta, 1990, vol. 165, no. 1, pp. 73–83.

    Article  CAS  Google Scholar 

  62. Stander, F. and Vanvuuren, C.P., J. Thermochim. Acta, 1990, vol. 165, no. 1, pp. 85–91.

    Article  CAS  Google Scholar 

  63. Lattimer, R.P., J. Anal. Appl. Pyrolysis, 2000, vol. 56, no. 1, pp. 61–78.

    Article  CAS  Google Scholar 

  64. Koc, R., J. Mater. Sci., 1998, vol. 33, no. 4, pp. 1049–1055.

    Article  CAS  Google Scholar 

  65. Gruner, W., Stolle, S., and Wetzig, K., Int. J. Refract. Met. Hard. Mater., 2000, vol. 18, nos. 2–3, pp. 137–145.

    Article  CAS  Google Scholar 

  66. Ferrari, A.C. and Robertson, J., Phys. Rev. B, 2000, vol. 61, no. 20, pp. 14095–14107.

    Article  CAS  Google Scholar 

  67. Ferrari, A.C. and Robertson, J., Phys. Rev. B, 2001, vol. 64, no. 7, p. 075414.

    Article  CAS  Google Scholar 

  68. Maultzsch, J., Reich, S., and Thomsen, C., Phys. Rev. B, 2004, vol. 70, no. 15, p. 155403.

    Article  CAS  Google Scholar 

  69. Chu, P.K. and Li, L.H., Mater. Chem. Phys., 2006, vol. 96, nos. 2–3, pp. 253–277.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Abdulagatov.

Additional information

Original Russian Text © A.I. Abdulagatov, Kr.N. Ashurbekova, Ka.N. Ashurbekova, R.R. Amashaev, M.Kh. Rabadanov, I.M. Abdulagatov, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 3, pp. 305−318.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulagatov, A.I., Ashurbekova, K.N., Ashurbekova, K.N. et al. Molecular Layer Deposition and Thermal Transformations of Titanium(Aluminum)-Vanadium Hybrid Organic-Inorganic Films. Russ J Appl Chem 91, 347–359 (2018). https://doi.org/10.1134/S1070427218030011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218030011

Navigation