Skip to main content
Log in

Atomic Layer Deposition and Thermal Transformations of Aluminum-Vanadium Oxide Thin Films

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Aluminum-vanadium oxide (AlxVyOz) nanofilms were obtained by atomic layer deposition using trimethylaluminum, vanadium oxychloride, and water. The growth of films was studied in situ by quartz crystal microbalance and ex situ by deposition on Si(100). At a deposition temperature of 115°C, linear growth of films and a self-limited nature of surface reactions were observed. Two types of amorphous films, Al2.1V0.4O4.1Cl0.1 and Al1.1V0.9O4.4Cl0.2, were obtained. The thermal treatment of Al1.1V0.9O4.4Cl0.2 films in the temperature range from 500 to 550°C in air resulted in the Al2O3–V2O5 heterostructured coatings. Annealing at 500°C led to spontaneous formation of crystalline V2O5 through the formation of supercooled vanadium oxide nanodroplets. At 550°C, the formation of V2O5 crystalline nanofilm and single-crystal nanowires was observed. Nanoscale islands of triclinic AlVO4 were obtained by heat treatment at 630°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Fu, X.L., Tang, W.M., Ji, L., and Chen, S.F., Chem. Eng. J., 2012, vol. 180, p. 170. https://doi.org/10.1016/j.cej.2011.11.032

    Article  CAS  Google Scholar 

  2. Scheurell, K., Scholz, G., and Kemnitz, E., J. Solid State Chem., 2007, vol. 180, no. 2, p. 749. https://doi.org/10.1016/J.JSSC.2006.12.003

    Article  CAS  Google Scholar 

  3. Baddour-Hadjean, R., Farcy, J., Pereira-Ramos, J.P., and Baffier, N., J. Electrochem. Soc., 1996, vol. 143, no. 7, p. 2083. https://doi.org/10.1002/CHIN.199646019

    Article  CAS  Google Scholar 

  4. Lim, S.H., Kim, D.H., Byun, J.Y., Kim, B.K., and Yoon, W.Y., Electrochim. Acta, 2013, vol. 107, p. 681. https://doi.org/10.1016/j.electacta.2013.06.045

    Article  CAS  Google Scholar 

  5. Palomares-Sánchez, S., Chumakov, Y., Ponce Castañeda, S., Watts, B., Leccabue, F., and Bocelli, G., J. Mater. Sci., 2007, vol. 42, p. 8690. https://doi.org/10.1007/S10853-007-1800-X

    Article  Google Scholar 

  6. Leyer, B., Schmelz, H., Gobel, H., Meixner, H., Scherg, T., and Knozinger, H., Thin Solid Films, 1997, vol. 310, nos. 1–2, p. 228. https://doi.org/10.1016/S0040-6090(97)00412-4

    Article  CAS  Google Scholar 

  7. Dhara, S., Sarkar, S., Basu, S., and Chattopadhyay, P., Appl. Radiat. Isot., 2009, vol. 67, no. 10, p. 1764. https://doi.org/10.1016/j.apradiso.2009.05.005

    Article  CAS  PubMed  Google Scholar 

  8. Franz, R. and Mitterer, C., Surf. Coat., 2013, vol. 228, p. 1. https://doi.org/10.1016/J.SURFCOAT.2013.04.034

    Article  CAS  Google Scholar 

  9. Landälv, L., Carlström, C., Lu, J., Primetzhofer, D., Jõesaar, M., Ahlgren, M., Göthelid, E., Alling, B., Hultman, L., and Eklund, P., Thin Solid Films, 2019, vol. 688, article ID 137369. https://doi.org/10.1016/j.tsf.2019.06.019

  10. Cheshnitskii, S.M., Kozhevnikov, V.L., and Fotiev, A.A., Inorg. Mater., 1985, vol. 21, no. 6, p. 854.

    Google Scholar 

  11. Cheshnitskii, S.M., Kozhevnikov, V.L., Fotiev, A.A., and Surat, L.L., Inorg. Mater., 1985, vol. 21, no. 2, p. 291.

    Google Scholar 

  12. Pradeep, I., Kumar, E.R., Suriyanarayanan, N., Mohanraj, K., Srinivas, C., and Mehar, M.V.K., New J. Chem., 2018, vol. 42, no. 6, p. 4278. https://doi.org/10.1039/C7NJ03607H

    Article  CAS  Google Scholar 

  13. Wang, C.C., Lu, C.L., Shieu, F.S., and Shih, H.C., Materials, 2021, vol. 14, no. 2, article ID 359. https://doi.org/10.3390/ma14020359

  14. Macchesney, J.B. and Guggenheim, H.J., J. Phys. Chem. Solids, 1969, vol. 30, no. 2, p. 225. https://doi.org/10.1016/0022-3697(69)90303-5

    Article  CAS  Google Scholar 

  15. Liu, K., Lee, S., Yang, S., Delaire, O., and Wu, J.Q., Mater. Today, 2018, vol. 21, no. 8, p. 875. https://doi.org/10.1016/J.MATTOD.2018.03.029

    Article  CAS  Google Scholar 

  16. Castro-Rodriguez, R., Pena, J.L., Ares, O., Leccabue, F., Watts, B.E., and Melioli, E., Mater. Lett., 2005, vol. 59, nos. 24–25, p. 3027. https://doi.org/10.1016/S0924-4247(03)00233-4

    Article  CAS  Google Scholar 

  17. Kol’tsov, S.I., Abstracts of Papers, Nauchno-tekhnicheskaya konferentsiya LTI im. Lensoveta (Scientific and Technical Conf. of Lensovet LTI), Leningrad, 1963, p. 27

  18. Kol’tsov, S.I. and Aleskovskii, V.B, Abstracts of Papers, Nauchno-tekhnicheskaya konferentsiya LTI im. Lensoveta (Scientific and Technical Conf. of Lensovet LTI), Leningrad, 1965, p. 67

  19. Malygin, A.A., Drozd, V.E., Malkov, A.A., and Smirnov, V.M., Chem. Vap. Dep., 2015, vol. 21, nos. 10–12, p. 216. https://doi.org/10.1002/cvde.201502013

    Article  CAS  Google Scholar 

  20. Malygin, A.A., Abstracts of Papers, III Mezhdunarodnyi seminar “Atomno-sloevoe osazhdenie: Rossiya, 2021” (International Seminar “Atomic Layer Deposition: Russia, 2021”), St. Petersburg, 2021, p. 13.

  21. Ponraj, J.S., Attolini, G., and Bosi, M., Crit. Rev. Solid State Mater. Sci., 2013, vol. 38, no. 3, p. 203. https://doi.org/10.1080/10408436.2012.736886

  22. Elam, J.W., Groner, M.D., and George, S.M., Rev. Sci. Instrum., 2002, vol. 73, no. 8, p. 2981. https://doi.org/10.1063/1.1490410

    Article  CAS  Google Scholar 

  23. Puurunen, R.L., J. Appl. Phys., 2005, vol. 97, no. 12, p. 121301. https://doi.org/10.1063/1.1940727

    Article  CAS  Google Scholar 

  24. George, S.M., Chem. Rev., 2010, vol. 110, no. 1, p. 111. https://doi.org/10.1021/cr900056b

    Article  CAS  PubMed  Google Scholar 

  25. Prasadam, V.P., Bahlawane, N., Mattelaer, F., Rampelberg, G., Detavernier, C., Fang, L., Jiang, Y., Martens, K., Parkin, I., and Papakonstantinou, I., Mater. Today Chem., 2019, vol. 12, p. 396. https://doi.org/10.1016/J.MTCHEM.2019.03.004

    Article  CAS  Google Scholar 

  26. Malygin, A.A., Russ. J. Gen. Chem., 2002, vol. 72, no. 4, p. 575. https://doi.org/10.1023/A:1016344516638

    Article  CAS  Google Scholar 

  27. Wind, R.W., Fabreguette, F.H., Sechrist, Z.A., and George, S.M., J. Appl. Phys., 2009, vol. 105, no. 7, article ID 074309. https://doi.org/10.1063/1.3103254

  28. Wind, R.A. and George, S.M., J. Phys. Chem. A, 2010, vol. 114, no. 3, p. 1281. https://doi.org/10.1021/jp9049268

    Article  CAS  PubMed  Google Scholar 

  29. Weckhuysen, B.M. and Keller, D.E., Catal. Today, 2003, vol. 78, nos. 1–4, p. 25. https://doi.org/10.1016/S0920-5861(02)00323-1

    Article  CAS  Google Scholar 

  30. Haber, J., Catal. Today, 2009, vol. 142, nos. 3–4, p. 100. https://doi.org/10.1016/j.cattod.2008.11.007

    Article  CAS  Google Scholar 

  31. Malygin, A.A., Compos. Interfaces, 1998, vol. 5, no. 6, p. 561. https://doi.org/10.1163/156855498X00072

    Article  CAS  Google Scholar 

  32. Abdulagatov, A.I., Maksumova, A.M., Palchaev, D.K., Rabadanov, M.Kh., and Abdulagatov, I.M., Russ. J. Appl. Chem., 2021, vol. 94, no. 7, p. 890. https://doi.org/10.1134/S1070427221070053

    Article  CAS  Google Scholar 

  33. CRC Handbook of Chemistry and Physics, Cleveland: CRC Press, 2007.

  34. Schneider, K., J. Mater Sci: Mater Electron., 2020, vol. 31, p. 10478. https://doi.org/10.1007/s10854-020-03596-0

    Article  CAS  Google Scholar 

  35. Jakschik, U.S.S., Hecht, T., Gutsche, M., Seidl, H., and Bartha, J.W., Thin Solid Films, 2003, vol. 425, p. 216. https://doi.org/10.1016/S0040-6090(02)01262-2

    Article  CAS  Google Scholar 

  36. Kumar, P., Wiedmann, M.K., Winter, C.H., and Avrutsky, I., Appl. Opt., 2009, vol. 48, no. 28, p. 5407. https://doi.org/10.1364/AO.48.005407

    Article  CAS  PubMed  Google Scholar 

  37. Chenakin, S.P., Silvy, R.P., and Kruse, N., J. Phys. Chem. B, 2005, vol. 109, no. 30, p. 14611. https://doi.org/10.1021/JP051944J

    Article  CAS  PubMed  Google Scholar 

  38. Hryha, E., Rutqvist, E., and Nyborg, L., Surf. Interface Anal., 2012, vol. 44, no. 8, p. 1022. https://doi.org/10.1002/SIA.3844

    Article  CAS  Google Scholar 

  39. Tangirala, M., Zhang, K., Nminibapiel, D., Pallem, V.R., Dussarrat, C., Cao, W., Adam, T., Johnson, C.S., Elsayed-Ali, H., and Baumgart, H., ECS J. Solid State Sci. Technol., 2014, vol. 3, no. 6, p, no.89. https://doi.org/10.1149/2.006406JSS

  40. Bellenger, F., Houssa, M., Delabie, A., Afanasiev, V., Conard, T., Caymax, M., Meuris, M., Meyer, K.D., and Heyns, M.M., J. Electrochem. Soc., 2008, vol. 155, no. 2, p. G33. https://doi.org/10.1149/1.2819626

  41. DuMont, J.W., Marquardt, A.E., Cano, A.M., and George, S.M., ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 11, p. 10296. https://doi.org/10.1109/EDTM50988.2021.9421056

    Article  CAS  PubMed  Google Scholar 

  42. Abdulagatov, A.I., Sharma, V., Murdzek, J.A., Cavanagh, A.S., and George, S.M., J. Vac. Sci. Technol. A, 2021, vol. 39, no. 2, article ID 022602. https://doi.org/10.1116/6.0000834

  43. Larsson, F., Keller, J., Primetzhofer, D., Riekehr, L., Edoff, M., and Torndahl, T., J. Vac. Sci. Technol. A, 2019, vol. 37, no. 3, article ID 030906. https://doi.org/10.1116/1.5092877

  44. Mackus, A.J.M., Schneider, J.R., MacIsaac, C., Baker, J.G., and Bent, S.F., Chem. Mater., 2019, vol. 31, no. 4, p. 1142. https://doi.org/10.1021/ACS.CHEMMATER.8B02878

    Article  CAS  Google Scholar 

  45. Coll, M. and Napari, M., Appl. Mater., 2019, vol. 7, no. 11, article ID 110901. https://doi.org/10.1063/1.5113656

  46. Myers, T.J., Cano, A.M., Lancaster, D.K., Clancey, J.W., and George, S.M., J. Vac. Sci. Technol. A, 2021, vol. 39, no. 2, article ID 021001. https://doi.org/10.1116/6.0000680

  47. George, S.M., Acc. Chem. Res., 2020, vol. 53, no. 6, p. 1151. https://doi.org/10.1021/acs.accounts.0c00084

    Article  CAS  PubMed  Google Scholar 

  48. H. S. C. Chemistry. Version 10, Program for Calculating the Thermodynamics of Chemical Reactions, 2020.

  49. Elam, J.W. and George, S.M., Chem. Mater., 2003, vol. 15, no. 4, p. 1020. https://doi.org/10.1021/CM020607+

    Article  CAS  Google Scholar 

  50. Su, Q., Liu, X.Q., Ma, H.L., Guo, Y.P., and Wang, Y.Y., J. Solid State Chem., 2008, vol. 12, nos. 7–8, p. 919. https://doi.org/10.1007/s10008-008-0515-5

    Article  CAS  Google Scholar 

  51. Dąbrowska, G., Tabero, P., and Kurzawa, M., J. Ph. Equilibria Diffus., 2009, vol. 30, no. 3, p. 220. https://doi.org/10.1007/S11669-009-9503-4

    Article  Google Scholar 

  52. Baletto, F. and Ferrando, R., Rev. Modern Phys., 2005, vol. 77, no. 1, p. 371. https://doi.org/10.1103/REVMODPHYS.77.371

    Article  CAS  Google Scholar 

  53. Kim, M., Lee, B., Lee, S., Larson, C., Baik, J.M., Yavuz, C., Seifert, S., Vajda, S., Winans, R., Moskovits, M., Stucky, G., and Wodtke, A., Nano Lett., 2009, vol. 9, no. 12, p. 4138. https://doi.org/10.1021/nl902357q

    Article  CAS  PubMed  Google Scholar 

  54. Lee, H., Yang, U.J., Kim, K.N., Park, S., Kil, K.H., Kim, J.S., Wodtke, A., Choi, W., Kim, M., and Baik, J.M., Nano Lett., 2019, vol. 19, no. 7, p. 4306. https://doi.org/10.1021/acs.nanolett.9b00684

    Article  CAS  PubMed  Google Scholar 

  55. Glushenkov, A.M., Stukachev, V.I., Hassan, M.F., Kuvshinov, G.G., Liu, H.K., and Chen, Y., Cryst. Growth Des., 2008, vol. 8, no. 10, p. 3661. https://doi.org/10.1021/cg800257d

    Article  CAS  Google Scholar 

  56. Vejux, A. and Courtine, P., J. Solid State Chem., 1978, vol. 23, nos. 1–2, p. 93. https://doi.org/10.1016/0022-4596(78)90055-5

    Article  CAS  Google Scholar 

  57. Overbury, S.H., Bertrand, P.A., and Somorjai, G.A., Chem. Rev., 1975, vol. 75, no. 5, p. 547. https://doi.org/10.1021/CR60297A001

    Article  CAS  Google Scholar 

  58. Spivey, J., Agarwal, S., Knözinger, H., and Taglauer, E., Catal., 1993, vol. 10, p. 1. https://doi.org/10.1039/9781847553225-00001

    Article  Google Scholar 

  59. Brázdová, V., Ganduglia-Pirovano, M., and Sauer, J., J. Phys. Chem. B, 2005, vol. 109, no. 1, p. 394. https://doi.org/10.1021/JP046055V

    Article  PubMed  Google Scholar 

  60. Touboul, M. and Popot, A., J. Therm. Anal. Calorim., 1986, vol. 31, no. 1, p. 117. https://doi.org/10.1007/BF01913892

    Article  CAS  Google Scholar 

  61. Lewis, D.B., Creasey, S., Zhou, Z., Forsyth, J., Ehiasarian, A., Hovsepian, P., Luo, Q., Rainforth, W.M., and Münz, W., Surf. Coat. Technol., 2004, vol. 177, p. 252. https://doi.org/10.1016/J.SURFCOAT.2003.09.041

    Article  Google Scholar 

  62. Chernitskii, S.M., Fotiev, A.A., and Surat, L.L., Zh. Neorg. Khim., 1983, vol. 28, no. 5, p. 1342.

    Google Scholar 

Download references

Funding

The work was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation within the framework of the state task (FZNZ-2020-0002, A.M. Maksumova, D.K. Palchaev, and I.M. Abdulagatov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Abdulagatov.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulagatov, A.I., Maksumova, A.M., Palchaev, D.K. et al. Atomic Layer Deposition and Thermal Transformations of Aluminum-Vanadium Oxide Thin Films. Russ J Gen Chem 92, 1498–1510 (2022). https://doi.org/10.1134/S1070363222080187

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222080187

Keywords:

Navigation