Skip to main content
Log in

Atmospheric Oxygen Influence on the Chemical Transformations of 4,5-Dimethyl-1,2-Phenylenediamine in the Reactions with Copper(II) Pivalate

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The one-pot synthesis of the Cu(II) complex with hard to access symmetric bis-azoligand is carried out by the reaction of 4,5-dimethyl-1,2-phenylenediamine (Dmpda) with the [Cu2(Piv)4(HPiv)2] complex (Piv is the pivalate anion) in the presence of atmospheric oxygen. The amine form of the ligand takes place and the bis-diiminosemiquinone biradical redox form of the ligand does not take place in the [CuLazo] complex as unambiguously shown by the data of X-ray structure analysis (CIF files CCDC nos. 1877582 (I · DMF) and 1877583 (II), ESR spectroscopy, SQUID magnetometry, and electrochemical and quantum chemical studies. The coordination polymer [Cu2(Piv)4(Dmpda)]n in which the Dmpda molecules perform the bridging function is formed in the same reaction mixture under reduced air pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Balch, A.L. and Holm, R.H., J. Am. Chem. Soc., 1966, vol. 88, p. 5201.

    Article  CAS  Google Scholar 

  2. Eremenko, I.L., Nefedov, S.E., Sidorov, A.A., et al., J. Organomet. Chem., 1998, vol. 551, p. 171.

    Article  CAS  Google Scholar 

  3. Sidorov, A.A., Danilov, P.V., Nefedov, S.E., et al., Russ. J. Inorg. Chem., 1998, vol. 43, p. 846.

    Google Scholar 

  4. Fomina, I.G., Talismanov, S.S., Sidorov, A.A., et al., Russ. Chem. Bull., 2001, vol. 50, p. 515.

    Article  CAS  Google Scholar 

  5. Herebian, D., Bothe, E., Neese, F., et al., J. Am. Chem. Soc., 2003, vol. 125, p. 9116.

    Article  CAS  PubMed  Google Scholar 

  6. Khusniyarov, M.M., Harms, K., Burghaus, O., et al., Dalton Trans., 2008, p. 1355.

  7. Stokes, F.A., Kloo, L., Lv, Y., et al., Chem. Commun., 2012, vol. 48, p. 11298.

    Article  CAS  Google Scholar 

  8. Mederos, A., Dominguez, S., Hernandez-Molina, R., et al., Coord. Chem. Rev., 1999, vols. 193−195, p. 913.

    Article  Google Scholar 

  9. Poddel’sky, A.I., Cherkasov, V.K., and Abakumov, G.A., Coord. Chem. Rev., 2009, vol. 253, p. 291.

    Article  CAS  Google Scholar 

  10. Olivos Suarez, A.I., Lyaskovskyy, V., Reek, J.N.H., et al., Angew. Chem., Int. Ed. Engl., 2013, vol. 52, p. 12510.

    Article  CAS  Google Scholar 

  11. Sidorov, A.A., Fomina, I.G., Nesterov, V.V., et al., Russ. Chem. Bull., 1999, vol. 48, no. 3, p. 573.

    Article  CAS  Google Scholar 

  12. Leconte, N., Ciccione, J., Gellon, G., et al., Chem. Commun., 2014, vol. 50, p. 1918.

    Article  CAS  Google Scholar 

  13. Ciccione, J., Leconte, N., Luneau, D., et al., Inorg. Chem., 2016, vol. 55, p. 649.

    Article  CAS  PubMed  Google Scholar 

  14. Talismanova, M.O., Fomina, I.G., Sidorov, A.A., et al., Russ. Chem. Bull., 2003, vol. 52, no. 12, p. 2706.

    Article  Google Scholar 

  15. Fomina, I.G., Sidorov, A.A., Aleksandrov, G.G., et al., Russ. Chem. Bull., 2002, vol. 51, no. 8, p. 1581.

    Article  CAS  Google Scholar 

  16. Malkov, A.E., Aleksandrov, G.G., Ikorskii, V.N., et al., Russ. J. Coord. Chem., 2001, vol. 27, no. 9, p. 636.

    Article  CAS  Google Scholar 

  17. Malkov, A.E., Sidorov, A.A., Aleksandrov, G.G., et al., Russ. Chem. Bull., 2003, vol. 52, no. 3, p. 710.

    Article  CAS  Google Scholar 

  18. Eremenko, I.L., Malkov, A.E., Sidorov, A.A., et al., Mendeleev Commun., 2003, vol. 13, no. 1, p. 10.

    Article  CAS  Google Scholar 

  19. Troyanov, S.I., Il’ina, E.G., Dunaeva, K.M., Koord. Khim., 1991, vol. 17, no. 12, p. 1692.

    CAS  Google Scholar 

  20. Denisova, T.O., Amel’chenkova, E.V., Pruss, I.V., et al., Russ. J. Inorg. Chem., 2006, vol. 51, no. 7, p. 1020.

    Article  Google Scholar 

  21. SMART (control) and SAINT (integration) Software. Version 5.0, Madison: Bruker AXS Inc., 1997.

  22. Sheldrick, G.M., SADABS. Program for Scanning and Correction of Area Detector Data, Göttinngen: Univ. of Göttinngen, 2004.

  23. Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, no. 1, p. 112.

    Article  CAS  Google Scholar 

  24. Rakitin, Yu.V. and Kalinnikov, V.T., Sovremennaya magnetokhimiya (Modern Magnetochemistry), St. Petersburg: Nauka, 1994.

  25. Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian 09 (revision E.01), Wallingford: Gaussian, Inc., 2013.

    Google Scholar 

  26. Starikov, A.G., Minyaev, R.M., and Minkin, V.I., J. Mol. Struct.: THEOCHEM, 2009, vol. 895, nos. 1−3, p. 138.

    Article  CAS  Google Scholar 

  27. Chemcraft. Version 1.7. 2013. http://www.chemcraftprog.com.

  28. Reuter, R., Hostettler, N., Neuburger, M., and Wegner, H.A., Eur. J. Org. Chem., 2009, vol. 2009, p. 5647.

    Article  CAS  Google Scholar 

  29. Hamon, F., Djedaini-Pilard, F., Barbot, F., and Len, C., Tetrahedron, 2009, vol. 65, p. 10105.

    Article  CAS  Google Scholar 

  30. Bellotto, S., Reuter, R., Heinis, C., and Wegner, H.A., Org. Chem., 2011, vol. 76, p. 9826.

    Article  CAS  Google Scholar 

  31. Kang, H.-M., Kim, H.-Y., Jung, J.-W., and Cho, C.G., J. Org. Chem., 2007, vol. 72, p. 679.

    Article  CAS  PubMed  Google Scholar 

  32. Mathews, M. and Tamaoki, N., J. Am. Chem. Soc., 2008, vol. 130, p. 11409.

    Article  CAS  PubMed  Google Scholar 

  33. Takaishi, K., Kawamoto, M., Muranaka, A., and Uchiyama, M., Org. Lett., 2012, vol. 14, no. 13, p. 3252.

    Article  CAS  PubMed  Google Scholar 

  34. Kerner, L., Kickova, A., Filo, J., et al., J. Phys. Chem. A, 2015, vol. 119, p. 8588.

    Article  CAS  PubMed  Google Scholar 

  35. Lu, J., Xia, A., Zhou, N., et al., Chem.-Eur. J., 2015, vol. 21, p. 2324.

    Article  CAS  PubMed  Google Scholar 

  36. Allen, F.H., Kennard, O., Watson, D.G., et al., Perkin Trans. II., 1987, p. S1.

    Article  Google Scholar 

  37. Adams, H., Bucknall, R.M., Fenton, D.E., et al., Polyhedron, 1998, vol. 17, nos. 23−24, p. 4169.

    Article  CAS  Google Scholar 

  38. Dhara, P.K., Pramanik, S., Lu, T.-H., et al., Polyhedron, 2004, vol. 23, p. 2457.

    Article  CAS  Google Scholar 

  39. Jarvis, J.A.J., Acta Crystallogr., 1961, vol. 14, no. 9, p. 961.

    Article  CAS  Google Scholar 

  40. Benaouida, M.A., Benosmane, A., Bouguerria, H., et al., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2013, vol. 69, p. m405.

    Article  CAS  Google Scholar 

  41. Abrahams, B.F., Egan, S.J., and Robson, R., J. Am. Chem. Soc., 1999, vol. 121, no. 14, p. 3535.

    Article  CAS  Google Scholar 

  42. Sarkar, S., Dhara, P.K., Nethaji, M., and Chattopadhyay, P., J. Coord. Chem., 2009, vol. 62, no. 5, p. 817.

    Article  CAS  Google Scholar 

  43. Tai, W.-J., Li, C.-H., Li, C.-Y., and Ko, B.-T., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2010, vol. 66, p. m1315.

    Article  CAS  Google Scholar 

  44. Burlov, A.S., Uraev, A.I., Lyssenko, K.A., et al., Russ. J. Coord. Chem., 2006, vol. 32, no. 9, p. 686. https://doi.org/10.1134/S1070328406090119

    Article  CAS  Google Scholar 

  45. Speier, G., Csihony, J., Whalen, A.M., and Pierpont, C.G., Inorg. Chem., 1996, vol. 35, p. 3519.

    Article  CAS  Google Scholar 

  46. Burlov, A.S., Uraev, A.I., Matuev, P.V., et al., Russ. J. Coord. Chem., 2008, vol. 34, no. 12, p. 904. https://doi.org/10.1134/S1070328408120063

    Article  CAS  Google Scholar 

  47. Bill, E., Bothe, E., Chaudhuri, P., et al., Chem.-Eur. J., 2005, vol. 11, p. 204.

    Article  CAS  Google Scholar 

  48. Ng, S.W., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2009, vol. 65, p. o1069.

    Article  CAS  Google Scholar 

  49. Stibrany, R.T. and Potenza, J.A., CSD Commun., 2012 (Private Communication; refcode GOGWEG, CCDC 893911).

  50. Rakitin, Yu.V., Larin, G.M., and Minin, V.V. Interpretatsiya spektrov EPR koordinatsionnykh soedinenii (Interpretation of the ESR Spectra of Coordination Compounds), Moscow: Nauka, 1993.

  51. Lebedev, Ya.S. and Muromtsev, V.I., EPR i relaksatsiya stabilizirovannykh radikalov (ESR and Relaxation of Stabilized Radicals), Moscow: Khimiya, 1972, p. 25.

  52. Wilson, R. and Kivelson, D., J. Chem. Phys., 1966, vol. 44, no. 1, p. 154.

    Article  CAS  Google Scholar 

  53. Belford, G.G., Belford, R.L., and Burkhalter, J.F., J. Magn. Reson., 1973, vol. 11, no. 2, p. 251.

    CAS  Google Scholar 

  54. Yakovenko, A.V., Kolotilov, S.V., Cador, O., et al., Eur. J. Inorg. Chem., 2009, no. 16, p. 2354.

  55. Utley, J.H.P. and Nielsen, M.F., Organic Electrochemistry, Lund, H. and Hammerich, O., N.Y., Eds., Marcel Dekker, Inc., 2001, p. 1227.

  56. McCann, M., Cronin, J.F., Devereux, M., et al., Polyhedron, 1995, vol. 14, nos. 23−24, p. 3617.

    Article  CAS  Google Scholar 

  57. Datta, D. and Chakravorty, A., Inorg. Chem., 1983, vol. 22, no. 7, p. 1085.

    Article  CAS  Google Scholar 

  58. Santra, P.K., Das, D., Misra, T.K., et al., Polyhedron, 1999, vol. 18, no. 14, p. 1909.

    Article  CAS  Google Scholar 

  59. McCreery, R.L., Chem. Rev., 2008, vol. 108, no. 7, p. 2646.

    Article  CAS  PubMed  Google Scholar 

  60. Khrizanforov, M.N., Arkhipova, D.M., Sheku-rov, R.P., et al., J. Solid State Electrochem., 2015, vol. 19, no. 9, p. 2883.

    Article  CAS  Google Scholar 

  61. Fomina, I., Dobrokhotova, Zh., Aleksandrov, G., et al., Polyhedron, 2010, vol. 29, no. 7, p. 1734.

    Article  CAS  Google Scholar 

  62. Zhang, C. and Jiao, N., Angew. Chem., Int. Ed., 2010, vol. 49, no. 35, p. 6174.

    Article  CAS  Google Scholar 

  63. Allen, S.E., Walvoord, R.R., Padilla-Salinas, R., and Kozlowski, M.C., Chem. Rev., 2013, vol. 113, no. 8, p. 6234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The X-ray structure analysis, elemental analysis, and ESR spectroscopy of the obtained compounds and the magnetochemical measurements for compound II were performed at the User Facilities Center of IGIC RAS within the State Assignment on Fundamental Research to the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences).

This work was supported by the Russian Science Foundation, project no. 14-23-00176.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nikolaevskii.

Additional information

Dedicated to the 90th birthday of Academician I.I. Moiseev

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaevskii, S.A., Kiskin, M.A., Starikov, A.G. et al. Atmospheric Oxygen Influence on the Chemical Transformations of 4,5-Dimethyl-1,2-Phenylenediamine in the Reactions with Copper(II) Pivalate. Russ J Coord Chem 45, 273–287 (2019). https://doi.org/10.1134/S1070328419040067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328419040067

Keywords:

Navigation