Skip to main content
Log in

Reactivity of 1,4-Diaza-1,3-Butadienes towards Cu(II) Pivalate: A Rare Case of Polymeric Structure Formed by Bridging Diazabutadiene Ligands

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The reaction of copper(II) trimethylacetate, [Cu(Piv)2]n (Piv = (Me)3CCOO), with 1,4-bis(R)-1,4-diaza-1,3-butadienes (R-DAD, R = 2,4,6-trimethylphenyl, Mes, or 2,6-diisopropylphenyl, dpp) in tetrahydrofuran afforded the coordination polymers [Cu2(Piv)4(Mes-DAD)]n (I) and [Cu2(Piv)4(dpp-DAD)]n (II). The structure of complexes in the crystal was determined by X-ray diffraction (CCDC nos. 2205866, 2205867). The products were shown to be 1D coordination polymers in which the binuclear {Cu2(Piv)4} moieties are linked into chains owing to the bridging function of 1,4-diaza-1,3-butadienes, which is unusual for this type of ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Gogoleva, N.V., Aleksandrov, G.G., Pavlov, A.A., et al., Russ. J. Coord. Chem., 2018, vol. 44, p. 91.

    Article  CAS  Google Scholar 

  2. Aromí, G., Batsanov, A.S., Christian, P., et al., Chem.- Eur. J., 2003, vol. 9, p. 5142.

    Article  Google Scholar 

  3. Eremenko, I.L., Kiskin, M.A., Fomina, I.G., et al., J. Clust. Sci., 2005, vol. 16, p. 331.

    Article  CAS  Google Scholar 

  4. Fursova, E.Y., Kuznetsova, O.V., Romanenko, G.V., and Ovcharenko, V.I., Russ. Chem. Bull., 2006, vol. 55, p. 1933.

    Article  CAS  Google Scholar 

  5. Pasynskii, A.A. and Shapovalov, S.S., Russ. J. Coord. Chem., 2016, vol. 42, p. 574.

    Article  CAS  Google Scholar 

  6. Kuznetsova, G.N., Nikolaevskii, S.A., Yambulatov, D.S., et al., J. Struct. Chem., 2021, vol. 62, p. 184.

    Article  CAS  Google Scholar 

  7. Zorina-Tikhonova, E.N., Yambulatov, D.S., Kiskin, M.A., et al., Russ. J. Coord. Chem., 2020, vol. 46, p 75.

    Article  CAS  Google Scholar 

  8. Adonin, S.A., Novikov, A.S., Smirnova, Y.K., et al., J. Struct. Chem., 2020, vol. 61, p. 712.

    Article  CAS  Google Scholar 

  9. Zaguzin, A.S., Mahmoudi, G., Sukhikh, T.S., et al., J. Mol. Struct., 2022, vol. 1255, p. 132459.

    Article  CAS  Google Scholar 

  10. Adonin, S.A., Usoltsev, A.N., Novikov, A.S., et al., Inorg. Chem., 2020, vol. 59, p. 3290.

    Article  CAS  Google Scholar 

  11. Kiskin, M.A. and Eremenko, I.L., Russ. Chem. Rev., 2006, vol. 75, p. 559.

    Article  CAS  Google Scholar 

  12. Wang, J., Feng, M., Akhtar, M.N., and Tong, M.-L., Coord. Chem. Rev., 2019, vol. 387, p. 129.

    Article  CAS  Google Scholar 

  13. Gatteschi, D., Sessoli, R., and Cornia, A., Chem. Commun., 2000, p. 725.

  14. Zorina-Tikhonova, E.N., Gogoleva, N.V., Sidorov, A.A., et al., Eur. J. Inorg. Chem., 2017, vol. 2017, p. 1396.

    Article  CAS  Google Scholar 

  15. Mihalčiak, J., Bertová, P., Růžičková, Z., et al., Inorg. Chem. Commun., 2015, vol. 56, p. 62.

    Article  Google Scholar 

  16. Yambulatov, D.S., Nikolaevskii, S.A., Shmelev, M.A., et al., Mendeleev Commun., 2021, vol. 31, p. 624.

    Article  CAS  Google Scholar 

  17. Yin, M., Lei, X., Li, M., Yuan, L., and Sun, J., J. Phys. Chem. Solids, 2006, vol. 67, p. 1372.

    Article  CAS  Google Scholar 

  18. Nikolaevskii, S.A., Yambulatov, D.S., Starikova, A.A., et al., Russ. J. Coord. Chem., 2020, vol. 46, p. 260.

    Article  CAS  Google Scholar 

  19. Kiskin, M.A., Varaksina, E.A., Taydakov, I.V., and Eremenko, I.L., Inorg. Chim. Acta, 2018, vol. 482, p. 85.

    Article  CAS  Google Scholar 

  20. Hu, S., Lv, L., Chen, S., You, M., and Fu, Z., Cryst. Growth Des., 2016, vol. 16, p. 6705.

    Article  CAS  Google Scholar 

  21. Zhang, R., Wang, L., Xu, C., et al., Dalton Trans., 2018, vol. 47, p. 7159.

    Article  CAS  Google Scholar 

  22. Egorov, E.N., Mikhalyova, E.A., Kiskin, M.A., et al., Russ. Chem. Bull, 2013, vol. 62, p. 2141.

    Article  CAS  Google Scholar 

  23. Bondarenko, M.A., Rakhmanova, M.I., Plyusnin, P.E., et al., Polyhedron, 2021, vol. 194, p. 114895.

    Article  CAS  Google Scholar 

  24. Zaguzin, A.S., Sukhikh, T.S., Sakhapov, I.F., et al., Molecules, 2022, vol. 27, p. 1305.

    Article  CAS  Google Scholar 

  25. Zaguzin, A.S., Sukhikh, T.S., Kolesov, B.A., et al., Polyhedron, 2022, vol. 212, p. 115587.

    Article  CAS  Google Scholar 

  26. Ahmed, F., Dutta, B., and Mir, M.H., Dalton Trans., 2021, vol. 50, p. 29.

    Article  CAS  Google Scholar 

  27. Givaja, G., Amo-Ochoa, P., Gómez-García, C.J., and Zamora, F., Chem. Soc. Rev., 2012, vol. 41, p. 115.

    Article  CAS  Google Scholar 

  28. Polunin, R.A., Kolotilov, S.V., Kiskin, M.A., et al., Eur. J. Inorg. Chem., 2011, vol. 2011, p. 4985.

    Article  CAS  Google Scholar 

  29. Islam, S., Das, P., Maiti, S., et al, Dalton Trans., 2020, vol. 49, p. 15323.

    Article  CAS  Google Scholar 

  30. Michaels, H., Golomb, M.J., Kim, B.J., et al., J. Mater. Chem. A, 2022, vol. 10, p. 9582.

    Article  CAS  Google Scholar 

  31. Puškarić, A., Dunatov, M., Jerić, I., et al., New J. Chem., 2022, vol. 46, p. 3504.

    Article  Google Scholar 

  32. Demakov, P.A., Ryadun, A.A., and Fedin, V.P., Polyhedron, 2022, vol. 219, p. 115793.

    Article  CAS  Google Scholar 

  33. Zavakhina, M.S., Samsonenko, D.G., Dybtsev, D.N., et al., Russ. Chem. Bull., 2015, vol. 64, p. 2908.

    Article  CAS  Google Scholar 

  34. Polunin, R.A., Kiskin, M.A., Gavrilenko, K.S., et al., Russ. J. Coord. Chem., 2017, vol. 43, p. 619.

    Article  CAS  Google Scholar 

  35. Van Koten, G. and Vrieze, K., Adv. Organomet. Chem., Academic, 1982.

  36. Nikolaevskaya, E.N., Druzhkov, N.O., Syroeshkin, M.A., and Egorov, M.P., Coord. Chem. Rev., 2020, vol. 417, p. 213353.

    Article  CAS  Google Scholar 

  37. Romashev, N.F., Gushchin, A.L., Fomenko, I.S., et al., Polyhedron, 2019, vol. 173, p. 114110.

    Article  CAS  Google Scholar 

  38. Gushchin, A.L., Romashev, N.F., Shmakova, A.A., et al., Mendeleev Commun., 2020, vol. 30, p. 81.

    Article  CAS  Google Scholar 

  39. Fomenko, I.S., Gushchin, A.L., Shul’pina, L.S., et al., New J. Chem., 2018, vol. 42, p. 16200.

    Article  CAS  Google Scholar 

  40. Bart, S.C., Hawrelak, E.J., Lobkovsky, E., and Chirik, P.J., Organometallics, 2005, vol. 24, p. 5518.

    Article  CAS  Google Scholar 

  41. Sandl, S., Maier, T.M., van Leest, N.P., et al., ACS Catal., 2019, vol. 9, p. 7596.

    Article  CAS  Google Scholar 

  42. Lima, G., Nunes, E., Dantas, R., et al., J. Braz. Chem. Soc., 2018, vol. 29, p. 412.

    CAS  Google Scholar 

  43. Moskalev, M.V., Skatova, A.A., Razborov, D.A., et al., Eur. J. Inorg. Chem., 2021, vol. 2021, p. 1890.

    Article  CAS  Google Scholar 

  44. Koptseva, T.S., Sokolov, V.G., Ketkov, S.Y., et al., Chem. -Eur. J., 2021, vol. 27, p. 5745.

    Article  CAS  Google Scholar 

  45. Wang, P., Saber, M.R., Vannatta, P.E., et al., Inorg. Chem., 2021, vol. 60, p. 6480.

    Article  CAS  Google Scholar 

  46. Yambulatov, D.S., Nikolaevskii, S.A., Kiskin, M.A., et al., Molecules, 2020, vol. 25, p. 2054.

    Article  CAS  Google Scholar 

  47. Khusniyarov, M.M., Weyhermueller, T., Bill, E., and Wieghardt, K., J. Am. Chem. Soc., 2009, vol. 131, p. 1208.

    Article  CAS  Google Scholar 

  48. Fedushkin, I.L., Maslova, O.V., Morozov, A.G., et al., Angew. Chem. Int. Ed., 2012, vol. 51, p. 10584.

    Article  CAS  Google Scholar 

  49. Fedushkin, I.L., Skatova, A.A., Yambulatov, D.S., et al., Russ. Chem. Bull., 2015, vol. 64, p. 38.

    Article  CAS  Google Scholar 

  50. de Frémont, P., Clavier, H., Rosa, V., et al., Organometallics, 2011, vol. 30, pp. 2241–2251.

    Article  Google Scholar 

  51. Clark, H.C., Ferguson, G., Jain, V.K., and Parvez, M., Inorg. Chem., 1986, vol. 25, p. 3808.

    Article  CAS  Google Scholar 

  52. Dieck, H.T. and Klaus, J., J. Organomet. Chem., 1983, vol. 246, p. 301.

    Article  Google Scholar 

  53. Van Der Poel, H., Van Koten, G., Vrieze, K., et al., Inorg. Chim. Acta, 1980, vol. 39, p. 197.

    Article  CAS  Google Scholar 

  54. Van der Poel, H., Van Koten, G., Vrieze, K., et al., J. Organomet. Chem., 1979, vol. 175, p. C21.

    Article  CAS  Google Scholar 

  55. Shen, L., Zhao, Y., Luo, Q., et al., Dalton Trans., 2019, vol. 48, p. 4643.

    Article  CAS  Google Scholar 

  56. Richter, B., Scholz, J., Sieler, J., and Thiele, K.-H., Angew. Chem. Int. Ed., 1996, vol. 34, p. 2649.

    Article  Google Scholar 

  57. Zoet, R., Van Koten, G., Stufkens, D.J., et al., Organometallics, 1988, vol. 7, p. 2118.

    Article  CAS  Google Scholar 

  58. Zoet, R., Van Koten, G., Muller, F., et al., Inorg. Chim. Acta, 1988, vol. 149, p. 193.

    Article  CAS  Google Scholar 

  59. Staal, L.H., Keijsper, J., Van Koten, G., et al., Inorg. Chem., 1981, vol. 20, p. 555.

    Article  CAS  Google Scholar 

  60. Frühauf, H.-W., Landers, A., Goddard, R., and Krüger, C., Angew. Chem., Int. Ed., 1978, vol. 17, p. 64.

    Article  Google Scholar 

  61. Nikolaevskii, S.A., Kiskin, M.A., Starikov, A.G., et al., Russ. J. Coord. Chem., 2019, vol. 45, p. 273.

    Article  CAS  Google Scholar 

  62. Fomina, I.G., Aleksandrov, G.G., Dobrokhotova, Z.V., et al., Russ. Chem. Bull., 2006, vol. 55, p. 1909.

    Article  CAS  Google Scholar 

  63. Bantreil, X. and Nolan, S.P., Nat. Protoc., 2011, vol. 6, p. 69.

    Article  CAS  Google Scholar 

  64. Sheldrick, G.M., SADABS, Madison: Bruker AXS Inc., 1997.

    Google Scholar 

  65. Sheldrick, G.M., SHELXT 2014/4 (Sheldrick, 2014).

  66. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, p. 339.

    Article  CAS  Google Scholar 

  67. Laine, T.V., Klinga, M., Maaninen, A., et al., Acta Chem. Scand., 1999, vol. 53, p. 968.

    Article  CAS  Google Scholar 

  68. Muller, T., Schrecke, B., and Bolte, M., Acta Crystallogr. Sect. E: Struct. Rep. Online, 2003, vol. 59, p. o1820.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was performed using the equipment of the JRC PMR IGIC RAS, supported by the state assignment of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, in the field of fundamental research.

Funding

The work was supported by the Ministry of Science and Higher Education of Russia as part of the state assignment of Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Yambulatov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronina, J.K., Gavronova, A.S., Yambulatov, D.S. et al. Reactivity of 1,4-Diaza-1,3-Butadienes towards Cu(II) Pivalate: A Rare Case of Polymeric Structure Formed by Bridging Diazabutadiene Ligands. Russ J Coord Chem 48, 916–923 (2022). https://doi.org/10.1134/S1070328422700154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328422700154

Keywords:

Navigation