Skip to main content
Log in

Electrical Conductivity of the Basement of East European Platform in the Southeastern Ladoga Region from Magnetotelluric Data

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—The paper presents the results of magnetotelluric soundings conducted in 2018–2019 in the southeastern Ladoga region for studying the deep geoelectric structure of the basement of the East European platform at the junction of the Russian plate with the Fennoscandinavian shield. The results of noise suppression processing of the observations on the 180-km Tikhvin–Vinnitsa profile and the invariant analysis of the obtained magnetotelluric and magnetovariational transfer operators are discussed. A geoelectrical model of the Earth’s crust along the profile down to a depth of 50 km is constructed by two-dimensional inversion. The model clearly reflects the structures of the southeastern segment of the Ladoga crustal conductivity anomaly confined to the extended Ladoga-Bothnian tectonic zone at the boundary of the Archaean (AR) and Proterozoic (PR) domains of the shield. Fundamental features of the similarity between the new 2D model of the Ladoga anomaly and the similar model previously constructed for the Vyborg–Suojärvi profile on the northern coast of Lake Ladoga are revealed: the general southwestward dip of the crustal conductive structures and a significant increase in their integral conductivity at the depths of 15–20 km within the southern segments of the profiles. A preliminary geological interpretation of the constructed resistivity section along the Tikhvin–Vinnitsa line is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Aleksanova, E.D., Kulikov, V.A., Pushkarev, P.Yu., and Yakovlev, A.G., Using the fields of electrified railways for electromagnetic sounding, Izv. Vuzov, Geol. Razved., 2003, no. 4, pp. 60–64.

  2. Berdichevsky, M.N. and Dmitriev, V.I., Models and Methods of Magnetotellurics, Moscow: Nauchnyi Mir, 2009.

    Google Scholar 

  3. Berzin, R.G., Kulikov, V.A., and Kaplan, S.A., Construction of a geoelectric section of the Earth’s crust based on MT data in the Tikhvin–Molokovo section of 1-EB profile, in Sb. tezisov: Pyatye geofizicheskie chteniya im. V.V. Fedynskogo (Abstracts of V.V. Fedynsky 5fth Geophysical Readings), Moscow: GEON, 2003.

  4. Feldman, I.S. and Erinchek, Yu.M., Geoelectric model of the Earth’s crust along the I-EB profile (Baltic shield–Caspian syneclise), Mater. IV Vseross. shk.-semin. po elektromagnitnym zondirovaniyam Zemli (Proc. IV All-Russ. School-Seminar on Electromagnetic Earth Sounding), Moscow: IFZ RAN, 2009.

  5. Golubtsova, N.S., Vagin, S.A., Vardanyants, I.L., Kovtun, A.A., Kulikov, V.A., Kovachikova, S., Lozovsky, I.N., Pushkarev, P.Yu., Smirnov, M.Yu., Sokolova, E.Yu., Taran Ya.V., Uspensky, N.I., Shustov, N.L., and Yakovlev, A.G., New magnetotelluric soundings on the Vyborg–Suoyarvi profile across the Ladoga conductivity anomaly, Vopr. Estestvozn., 2016, vol. 10, no. 2, pp. 72–76.

    Google Scholar 

  6. Golubtsova, N.S. et al. (LADOGA Collab.), Study of the deep conductivity structure of the lake-Ladoga region: quasi 3D- and 3D-models, Mater. Vseross. konf. mezhdunar. uchastiem “Glubinnoe stroenie i geodinamika Priladozh’ya” (Pap. All-Russian Conf. with Participation Foreign Scientists “Deep Structure and Geodynamics of Lake Ladoga Region”), Petrozavodsk, 2017, Inst. Geol. Karel. Nauchn. Tsentra RAN, 2017, pp. 287–291.

  7. Hjelt, S.E., Deep electromagnetic studies of the Baltic Shield, J. Geophysics, 1984, vol. 55, no. 3, pp. 144–152.

    Google Scholar 

  8. Kolesnikov, V.E., Nilov, M.Yu., and Zhamaletdinov, A.A., Multi-electrod electrical profiling in the northern Ladoga area, in Practical and Theoretical Aspects of Geological Interpretation of Gravitational, Magnetic and Electrical Fields: Nurgaliev, D. and Khairullina (Matveeva), N., Eds., Kazan, 2018, Cham, Switzerland: Springer, 2019, pp. 321–329.

  9. Korja, T. et al. (BEAR Collab.), Crustal conductivity in Fennoscandia—a compilation of a database on crustal conductance in the Fennoscandian Shield, Earth, Planets Space, 2002, vol. 54, pp. 535–558.

    Article  Google Scholar 

  10. Kovtun, A.A., Stroyenie kory i verkhnei mantii na severo-zapade Vostochno-Yevropeyskoi platformy po dannym magnitotelluricheskikh zondirovanii (The Structure of the Crust and Upper Mantle in the Northwest of the East European Platform Based on Magnetotelluric Sounding Data), Leningrad: LGU, 1989.

  11. Kovtun, A.A., Vagin, S.A., Vardanyants, I.L., et al., The structure of the crust and mantle along the Suoyarvi–Vyborg profile from magnetotelluric data, Vestn. S.-Peterb. Univ.,Ser. Fiz. Khim., 1998, vol. 4, pp. 25–34.

    Google Scholar 

  12. Kovtun, A.A., Vardanyants, I.L., and Uspenskii, N.I., Comparison of seismic and geoelectric models of the Ladoga–Bothnia anomalous zone, Vopr. Geofiz., 2011, vol. 44, pp. 124–133.

    Google Scholar 

  13. Kulikov, V.A., Sokolova, E.Yu., Desyatov, D.O., et al., New MTZ-GMTZ data on the Kirishi-Podporozhye profile 2018, in Sb. tezisov Mezhdunar. geol.-geofiz. konf. i vystavki “GeoEvraziya-2019: Sovremennye tekhnologii izucheniya i osvoeniya nedr Evrazii” (Abstracts Int. Geol. and Geophys. Conf. and Exhibition “GeoEurasia-2019: Modern Technologies for Studying and Developing the Subsoil of Eurasia”), Moscow: PoliPRESS, 2019, pp. 446–452.

  14. Lazareva, N.V., Some peculiarities in the behavior of the natural electromagnetic field on the southern slope of the Baltic shield, Vopr. Razved. Geofiz., 1967. vol. 6.

    Google Scholar 

  15. Mints, M.V., Suleimanov, A.K., Babayants, P.S., Belousova, E.A., Blokh, Yu.I., Bogina, M.M., Bush, V.A., Dokukina, K.A., Zamozhnyaya, N.G., Zlobin, V.L., Kaulina, T.V., Konilov, A.N., Mikhailov, V.O., Natapov, L.M., Piip, V.B., et al., Glubinnoe stroenie, evolyutsiya i poleznye iskopaemye rannedokembriiskogo fundamenta Vostochno-Evropeiskoi platformy: Interpretatsiya materialov po opornomu profilyu 1-YEV, profilyam 4V i Tatseys (Deep Structure, Evolution and Minerals of the Early Precambrian Basement of the East European Platform: Interpretation of Materials on Reference Profile 1-EB, Profiles 4B and Tatseis), vols. 1–2, Moscow: GEOKART, GEOS, 2010.

  16. Mints, M.V., Sokolova, E.Yu., et al. (LADOGA Collab.), 3D model of the deep structure of the Svecofennian accretionary orogen based on data from CDP seismic reflection method, MT sounding and density modeling, Tr. Karel. Nauchn. Tsentra RAN, Ser. Geol. Dokembriya, 2018, no. 2, pp. 34–61.

  17. Naganjaneyulu, K. and Santos, M., Geophysical signatures of fluids in a reactivated Precambrian collisional suture in central India, Geosci. Front., 2011, vol. 2, no. 3, pp. 289–301.

    Article  Google Scholar 

  18. Pajunpää, K., Conductivity anomalies in the Baltic Shield in Finland, Geophys. J. R. Astron. Soc., 1987, vol. 91, no. 3, pp. 657–666.

    Article  Google Scholar 

  19. Rokityansky, I.I., Kulik, S.N., and Rokityanskaya, D.A., Ladoga electrical conductivity anomaly, Geofiz. Zh., 1981, no. 3, pp. 97–99.

  20. Rokityansky, I.I. and et al. (LADOGA Collab.), Magnetovariational studies of Lake Ladoga crustal conductivity anomaly: from discovery in 70 th to understanding of its spatial behavior and deep structure on modern observations, Proc. 17th EAGE International Conference on Geoinformatics–Theoretical and Applied Aspects, Kyiv, 2018, Houten, Netherlands: European Association of Geoscientists and Engineers (EAGE), 2018a, pp. 1–6.

  21. Rokityansky, I.I., Sokolova E.Yu., Tereshyn, A.V., Yakovlev, A.G., et al. (LADOGA Collab.), Electrical conductivity anomalies in the contact zones of the Archean and Proterozoic geobloks on the Ukrainian and Baltic shields, Geofiz. Zh., 2018b, vol. 40, no. 5, pp. 209–244.

    Google Scholar 

  22. Sokolova, E.Yu. et al. (EMTESZ Collab.), The RRMC technique fights highly coherent EM noise, in Protokoll uber das 21 Kolloquium“EM Tiefenforschung,” Ritter, O., Brasse, H., Eds., 2005, Potsdam: Dtsch. Geophys. Ges., pp. 124–136.

    Google Scholar 

  23. Sokolova, E.Yu., Golubtsova, N.S., Kovtun, A.A., Kulikov, V.A., Lozovsky, I.N., Pushkarev, P.Yu., Rokityansky, I.I., Taran, Ya.V., and Yakovlev, A.G., Results of synchronous magnetotelluric and magnetovariational soundings in the region of Ladoga conductivity anomaly, Geofizika, 2016, no. 1, pp. 48–61.

  24. Sokolova, E.Yu., et al. (LADOGA Collab.), Experiment of synchronous MT/MV sounding of the Ladoga electrical conductivity anomaly: new evidence on the crustal structure of the southeastern Baltic shield, Glubinnoe stroenie i geodinamika Priladozh’ya: Mater. Vseross. konf. s mezhdunar. uchastiem (Deep Structure and Geodynamics of the Ladoga area: Proc. All-Russ. Conf. with Int. Participation), Petrozavodsk: Inst. Geol. Karel. Nauchn. Tsentra RAN, 2017, pp. 205–214.

  25. Stepanov, K., Antashchuk, K., and Saraev, A., Clarification of Pasha Rift structure in Pasha-Ladoga Basin based on AMT and gravity data, Geophysica, 2016, vol. 51, nos. 1–2, pp. 51–67.

    Google Scholar 

  26. Taran, Ya.V., Zaitsev, S.V., Sokolova, E.Yu., and Pushkarev, P.Yu., Experience of data inversion of new MT/MV soundings along the Vyborg–Suoyarvi profile through the Ladoga electrical conductivity anomaly, Glubinnoe stroenie i geodinamika Priladozh’ya: Mater. Vseross. konf. s mezhdunar. uchastiem (Deep Structure and Geodynamics of the Ladoga Area: Proc. All-Russ. Conf. with Int. Participation), Petrozavodsk: Inst. Geol. Karel. Nauchn. Tsentra RAN, 2017, pp. 224–230.

  27. Varentsov, Iv.M., Joint robust inversion of magnetotelluric and magnetovariational data, in Electromagnetic Sounding of the Earth’s Interior, vol. 40: Methods in Geochemistry and Geophysics, Spichak, V.V., Ed., Amsterdam: Elsevier. 2007, pp. 189–222.

  28. Varentsov, Iv.M., Sokolova, E.Yu., Martanus, E.R., Nalivaiko, K.V., et al. (BEAR Collab.), System of electromagnetic field transfer operators for the BEAR array of simultaneous soundings: methods and results, Izv.,Phys. Solid Earth, 2003, vol. 39, no. 2. pp. 118–148.

    Google Scholar 

  29. Varentsov, Iv.M. et al. (EMTESZ-Pomerania Collab.), The magnetic control approach for the reliable estimation of transfer functions in the EMTESZ-Pomerania project, in Publ. Inst. Geophys. Polish Acad. Sci., vol. C-95 (386) “Study of Geological Structures Containing Well-Conductive Complexes in Poland,” Warsaw: Inst. Geophys. Polish Acad. Sci., 2005, pp. 67–80.

  30. Vasin, N.D., Geoelectric characteristic of the section of southwestern Karelia, Zap. Leningr. Gorn. Inst., 1988, vol. 113, pp. 57–63.

    Google Scholar 

  31. Weckmann, U., Making and breaking of a continent: following the scent of geodynamic imprints on the African continent using electromagnetics, Surv. Geophys., 2012, vol. 33, pp. 107–134.

    Article  Google Scholar 

  32. Yepishkin, D.V., Development of data processing methods for synchronous magnetotelluric soundings, Cand. Sci. (Eng.) Dissertation, Moscow: Moscow State Univ., 2018.

  33. Yin, Y., Unsworth, M., Liddell, M., Pana, D., and Craven, J.A., Electrical resistivity structure of the Great Slave Lake shear zone, northwest Canada: implications for tectonic history, Geophys. J. Int., 2014, vol. 199, no. 1, pp. 178–199.

    Article  Google Scholar 

  34. Zhamaletdinov, A.A. and Kulik, S.N., World largest electric conductivity anomalies, Geofiz. Zh., 2012, vol. 34, no. 4, pp. 22–39.

    Google Scholar 

  35. Zhamaletdinov, A.A., Rokityansky, I.I., Sokolova, E.Yu., Evolution of ideas on the nature and structure of Ladoga anomaly of electrical conductivity, in Practical and Theoretical Aspects of Geological Interpretation of Gravitational, Magnetic and Electrical Fields: Proc. 45-th Uspensky Int. Geophys. Seminar, Nurgaliev, D. and Khairullina (Matveeva), N., Eds., Kazan, 2018, Cham, Switzerland: Springer, 2019, pp. 197–206.

Download references

ACKNOWLEDGMENTS

The authors of the article are grateful to all LADOGA Working Group members and students of the Department of Geophysics, Faculty of Geology, Lomonosov Moscow State University, who took part in the preparation and conduct of fieldwork in the southeastern Ladoga Region in 2018–2019, as well as personally to M.Yu. Nilov and N.V. Sharov (Institute of Geology of the Karelian Research Center), and to all developers of the effective software tools used for processing, analysis and interpretation of MT data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Kulikov, E. Yu. Sokolova, A. P. Ionicheva or P. Yu. Pushkarev.

Ethics declarations

The study was financed by a grant from the Russian Foundation for Basic Research 16-05-00543 and Nord-West Ltd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikov, V.A., Sokolova, E.Y., Ionicheva, A.P. et al. Electrical Conductivity of the Basement of East European Platform in the Southeastern Ladoga Region from Magnetotelluric Data. Izv., Phys. Solid Earth 56, 789–807 (2020). https://doi.org/10.1134/S1069351320050055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351320050055

Keywords:

Navigation