Skip to main content
Log in

A Geoelectrical Model of the Southern Ladoga Region on the Basis of 3D Magnetotelluric Data Inversion

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—The paper presents results of magnetotelluric sounding performed in the South-Eastern Ladoga Region in 2018–2021 for the purpose of studying the deep geoelectrical structure of the basement of the East-European Platform (EEP). The area of the study covers the territory south and south-east of Lake Ladoga to the latitude 58°45′ S and the longitude 35°37′ E. In the west, the territory is confined to the Saint Petersburg — Murmansk electric railway. The data gathered by the LADOGA working group and the most solid findings of the previous studies were used to make a 3D inversion and to build a three-dimensional geoelectrical model of the area under study. More detailed electrical resistivity models were obtained for specific profiles on the basis of a two-dimensional inversion. We traced the continuation of the southern branch of the Ladoga electrical conductivity anomaly and clarified its deep structure. Also, we established completely new zones of the crustal electrical conductivity anomaly, which are presumed to mark first-order tectonic boundaries between the South-Baltic belt and the central Russian orogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Aksamentova, N.V., Dankevich, I.V., and Naydenkov, I.V., Deep structure of the Belarus–Baltic granulite belt, Dokl. Nats. Akad. Nauk Belarusi, 1994, vol. 38, no. 2, pp. 93–98.

    Google Scholar 

  2. Berzin, R.G., Kulikov, V.A., and Kaplan, S.A., Building a geoelectric section of the Earth’s crust based on MTS data in the Tikhvin–Molokovo section of 1-EB profile, in Sb. tezisov: Pyatye geofizicheskie chteniya im. V.V. Fedynskogo (Book of Abstracts of 5th V.V.Fedynsky Geophysical Readings), Moscow, 2003, Moscow: GEON, 2003.

  3. Bogdanova, S.V., Zemnaya kora Russkoy plity v rannem dokembrii (na primere Volgo-Ural’skogo segmenta) (The Earth’s Crust of the Russian Plate in the Early Precambrian: Case Study of the Volgo-Uralian Segment), Bogdanova, S.V., Ed., Moscow: Nauka, 1986.

    Google Scholar 

  4. Bogdanova, S.V., Pashkevich, I.K., Gorbatchev, R., and Orlyuk, M.I., Riphean rifting and major Palaeproterozoic crustal boundaries in the basement of the East European Craton: geology and geophysics, Tectonophysics, 1996, vol. 268, nos. 1–4, pp. 1–21.

    Article  Google Scholar 

  5. Bogdanova, S.V., Bingen, B., Gorbatschev, R., Kheraskova, T.N., Kozlov, V.I., Puchkov, V.N., and Volozh, Yu.A., The East European Craton (Baltica) before and during the assembly of Rodinia, Precambrian Res., 2008, vol. 160, nos. 1–2, pp. 23–45.

    Article  Google Scholar 

  6. Bogdanova, S., Gorbatschev, R., Skridlaite, G., Soesoo, A., Taran, L., and Kurlovich, D., Trans-Baltic Palaeoproterozoic correlations towards the reconstruction of supercontinent Columbia/Nuna, Precambrian Res., 2015, vol. 259, pp. 5–33.

    Article  Google Scholar 

  7. Burtman, V.S. and Kolodyazhny, S.Yu., Fault systems in the upper crust of the Fennoscandian Shield, the East European Platform, Geodyn.Tectonophys., 2020, vol. 11, no. 4, pp. 756–769.

    Article  Google Scholar 

  8. Chamov, N.P., Stroenie i razvitie Srednerussko-Belomorskoi provintsii v neoproterozoe (The Structure and Development of the Central Russian-Belomorian Province in Neoproterozoic), Proc.Geol.Inst. RAS, Vol. 609, Leonov, Yu.G. and Fedonkin, M.A., Eds., Moscow: GEOS, 2016.

    Google Scholar 

  9. Egbert, G.D. and Kelbert, A., Computational recipes for electromagnetic inverse problems, Geophys. J. Int., 2012, vol. 189, no. 1, pp. 251–267.

    Article  Google Scholar 

  10. Feldman, I.S. and Erinchek, Yu.M., Geoelectric model of the Earth’s crust along the I-EV profile (Baltic Shield–Caspian syneclise), in IV Vseross. shkola-seminar po elektromagnitnym zondirovaniyam Zemli (EMZ-09) (IV All-Russ. Workshop on Electromagnetic Sounding of the Earth), Moscow, 2009.

  11. Garetsky, R.G. and Karatayev, G.I., A tectonogeodynamic model for the junction zone between the Fennoscandian and Sarmatian segments of the East European Platform, Russ. Geol. Geophys., 2011, vol. 52, no. 10, pp. 1228–1235.

    Article  Google Scholar 

  12. Garetsky, R.G. and Karatayev, G.I., Shovnye zony Fennoskandii, Sarmatii i Volgo-Uralii (Suture Zones of Fennoscandia, Sarmatia and Volgo-Uralia), Minsk: Belaruskaya Navuka, 2014.

  13. Gorbatschev, R. and Bogdanova, S., Frontiers in the Baltic shield, Precambrian Res., 1993, vol. 64, nos. 1–4, pp. 3–21.

    Article  Google Scholar 

  14. Heinson, G., Didana, Y., Soeffky, P., Thiel, S., and Wise, T., The crustal geophysical signature of a world-class magmatic mineral system, Nat. Sci. Rep., 2018, vol. 8, Article ID 10608.

  15. Kelbert, A., Meqbel, N., Egbert, G.D., and Tandon, K., ModEM: A modular system for inversion of electromagnetic geophysical data, Comput. Geosci., 2014, vol. 66, pp. 40–53. https://doi.org/10.1016/j.cageo.2014.01.010

    Article  Google Scholar 

  16. Kolodyazhny, S.Yu., Long-lived structural ensembles of the East-European Platform. Article 1. The basement tectonics, Izv. Vyssh. Uchebn. Zaved., Geol. Razved., 2018, no. 2, pp. 5–13.

  17. Korja, T., Engels, M., Zhamaletdinov, A.A., Kovtun, A.A., Palshin, N.A., Smirnov, M.Yu., Tokarev, A.D., Asming, V.E., Vanyan, L.L., Vardaniants, I.L., and BEAR Collab., Crustal conductivity in Fennoscandia – a compilation of a database on crustal conductance in the Fennoscandian Shield, Earth, Planets Space, 2002, vol. 54, no. 5, pp. 535–558.

    Article  Google Scholar 

  18. Kovtun, A.A., Stroenie kory i verkhney mantii na severo-zapade Vostochno-Evropeyskoy platformy (The Structure of the Crust and the Upper Mantle in the North-West of the East-European Platform), Leningrad: LGU, 1989.

  19. Kovtun, A.A., Vardanyants, I.L., and Uspensky, N.I., Comparison of seismic and geoelectric models of the Ladoga–Bothnian anomaly, Vopr. Geofiz., 2011, no. 44, pp. 124–132.

  20. Kulikov, V.A., Aleksanova, E.D., Varentsov, I.M., Zaytsev, S.A., Lozovsky, I.N., Lubnina, N.V., Pushkarev, P.Yu., Shustov, N.L., Yakovlev, A.G., and Ionicheva, A.P., The Baryatino crustal electrical conductivity anomaly based on the results of areal MT surveys, Geofizika, 2018, no. 1, pp. 31–43.

  21. Kulikov, V.A., Sokolova, E.Yu., Desyatov, D.O., Ioni-cheva, A.P., Pushkarev, P.Yu., and Sumarokova, E.S., New 2018 MTS-DMTS findings on the Kirishi-Podporozhye profile, Proc. of GeoEurasia-2019 International Geological and Geophysical Conference, Modern Methods of Exploration and Exploitation of Eurasia’s Subsurface Resources, Moscow, 2019, Tver: PolyPRESS, 2019, pp. 446–452.

  22. Kulikov, V.A., Sokolova, E.Yu., Ionicheva, A.P., Pushkarev, P.Yu. and Yakovlev, A.G., Electrical conductivity of the basement of East European Platform in the southeastern Ladoga region from magnetotelluric data, Izv., Phys. Solid Earth, 2020, vol. 56, no. 6, pp. 789–807.

    Article  Google Scholar 

  23. Kulikov, V.A., Ionicheva, A.P., Korol’kova, A.V., Pushkarev, P.Yu., Sokolova, E.Yu., and Yakovlev, A.G., 3D inversion of magnetotelluric sounding data in the southern Ladoga Region, Moscow Univ. Geol. Bull., 2022, vol. 77, no. 1, pp. 138–146.

    Article  Google Scholar 

  24. Litvinova, T.P., Krasinskii, E.M., Glebovskii, V.Yu., Belov, E.A., Boiko, A.V., and Serykh, S.V., The 1 : 2 500 000 gravimetric map of Russia (Δg, Bouguer anomaly, σ = 2.67 g/cm3), VSEGEI, 2016a. https://vsegei.ru/ru/info/atlas/grav/.

  25. Litvinova, T.P., Krasinskii, E.M., Glebovskii, V.Yu., Belov, E.A., Boiko, A.V., Voronova, M.A., and Vasil’eva, S.I., The 1 : 2 500 000 magnetic anomaly map of Russia, VSEGEI, 2016b. https://vsegei.ru/ru/info/atlas/mag/.

  26. Mints, M.V., Paleoproterozoic supercontinent: Origin and evolution of accretionary and collisional orogens exemplified in Northern cratons, Geotectonics, 2007, vol. 41, no. 4, pp. 257–280.

    Article  Google Scholar 

  27. Mints, M.V., 3D model of deep structure of the early Precambrian crust in the East-European craton and paleogeodynamic implications, Geotectonics, 2011, vol. 45, no. 4, Article ID 267.

    Article  Google Scholar 

  28. Mints, M.V., Suleimanov, A.K., Babayants, P.S., Belousova, E.A., Blokh, Yu.I., Bogina, M.M., Bush, V.A., Dokukina, K.A., Zamozhnyaya, N.G., Zlobin, V.L., Kaulina, T.V., Konilov, A.N., Mikhailov, V.O., Natapov, L.M., Piyp, V.B., Stupak, V.M., Tikhotsky, S.A., Trusov, A.A., Filippova, I.B., and Shur, D.Yu., Glubinnoe stroenie, evolutsiya i poleznye iskopaemye Rannedokembriyskogo fundamenta Vostochno-Evropeyskoy platformy: interpretatsiya materialov po opornomy profily 1-EV, profilyam 4V i Tatseis (Deep Crustal Structure, Evolution and Mineral Deposits of the Early Precambrian Basement of the East-European Platform: Interpretation of the Data Along the 1-EU Geotraverse, the 4B and Tatseis Profiles), vols. 1 and 2, Gusev, G.S., Mezhelovsky, N.V., and Fedorchyk, V.P., Eds., Moscow: Geokart, GEOS, 2010.

  29. Mints, M.V., Sokolova, E.Yu., and LADOGA Collab., A 3D model of the deep structure of the Svecofennian accretionary orogen based on data from CDP seismic reflection method, MT sounding and density modelling, Tr. Kar. Nauchn. Tsentra RAN, 2018, no. 2, pp. 34–61.

  30. Morozov, Yu.A., The role of transpression in the structural evolution of the Svecokarelides in the Baltic Shield, Geotectonics, 1999, vol. 33, no. 4, pp. 37–50.

    Google Scholar 

  31. Morozov, Yu.A., The structure formation function of transpression and transtension, Geotectonics, 2002, no. 6, pp. 3–24.

  32. Pospeeva, E.V., The nature of deep electrical conductivity and correlation between crustal anomalies and mineral deposits, in Materialy VIII Vseross. shkoly-seminara po elektromagnitnym zondirovaniyam Zemli im. M.N. Berdichevskogo i L.L. Vanyana (EMZ-2021) (Abstracts of VIII All-Russian EMS-2021 Workshop), Lozovskiy, I.N. and Vasilyeva, T.A., Eds., Moscow, October 4-9, 2021, Moscow: IFZ RAN, 2021, pp. 35–44.

  33. Rokityansky, I.I., Kulik, S.N., and Rokityanskaya, D.A., Ladoga anomaly of electrical conductivity, Geofiz. Zh., 1981, vol. 3, no. 3, pp. 97–99.

    Google Scholar 

  34. Rokityansky, I.I., Kulik, S.N., Logvinov, I.M., and Rokityanskaya, D.A., Anomalies of geomagnetic variations in the north-west of the European part of the USSR, Izv. Ross. Akad. Nauk, Fiz. Zemli, 1982, no. 11, pp. 101–106.

  35. Sokolova, E.Yu., Golubtsova, N.S., Kovtun, A.A., Kulikov, V.A., Lozovsky, I.N., Pushkarev, P.Yu., Rokityansky, I.I., Taran, Ya.V., and Yakovlev, A.G., Results of synchronous magnetotelluric and magnetovariational soundings in the area of Ladoga conductivity anomaly, Geofizika, 2016, no. 1, pp. 48–61.

  36. Stepanov, K., Antashchuk, K., and Saraev, A., Clarification of Pasha Rift Structure in Pasha-Ladoga Basin Based on AMT and Gravity Data, Geophysica, 2016, vol. 51, no. 1-2, pp. 51–67.

    Google Scholar 

  37. Taran, Ya.V., Zaitsev, S.V., Sokolova, E.Yu., and Pushkarev, P.Yu., Experience of data inversion of new MT/MV soundings along the Vyborg–Suoyarvi profile through the Ladoga electrical conductivity anomaly, in Glubinnoe stroenie i geodinamika Priladozhya, Mater. Vseross. konf. s mezhdunar. uchastiem (Deep Structure and Geodynamics of the Ladoga Region: Proc. All-Russ. Conf. with Int. Participation), Petrozavodsk, 2017, Petrozavodsk: Kar. Nauchn. Ts. RAS, 2017, pp. 224–230.

  38. Vasin, N.D., Geoelectrical description of the southwestern Karelia section, Zap. Gorn. Inst., 1988, vol. 113, pp. 57–63.

    Google Scholar 

  39. Zhamaletdinov, A.A. and Kulik, S.N., The world’s largest anomalies of electrical conductivity, Geofiz. Zh., 2012, vol. 34, no. 4, pp. 22–39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Kulikov, A. P. Ionicheva, S. Yu. Kolodyazhny, E. Yu. Sokolova, P. Yu. Pushkarev or A. G. Yakovlev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikov, V.A., Ionicheva, A.P., Kolodyazhny, S.Y. et al. A Geoelectrical Model of the Southern Ladoga Region on the Basis of 3D Magnetotelluric Data Inversion. Izv., Phys. Solid Earth 58, 642–654 (2022). https://doi.org/10.1134/S1069351322050056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351322050056

Keywords:

Navigation