Skip to main content

Advertisement

Log in

Making and Breaking of a Continent: Following the Scent of Geodynamic Imprints on the African Continent Using Electromagnetics

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The African continent inherits a long history of continental accretion and breakup. The stage of “making” a continent goes back to the Archean, when the first continental masses formed cratons which mostly remained stable ever since. Subsequent collision of weaker continental masses was followed by several extension and compression episodes that resulted in the formation of super-continents. After the assemblage of Gondwana, a period of predominantly “breaking” , i.e., the breakup of super-continents, took over. The modern-day African continent exhibits different types of margins; continental rifting occurs side by side with recent collision. Since the late 1960s, magnetotelluric (MT) experiments have played an important role in studies of the electrical conductivity structure of Africa. The early results significantly shaped the MT community’s understanding of continental-scale conductivity belts and basic characteristics of cratons and mobile belts on both crustal and lithospheric mantle scales for some decades. Modern MT studies in Africa have generally supported earlier results with high resistivities observed on cratons and low resistivities observed across mobile belts. Advances in instrumentation, data processing and interpretation resulted in higher-resolution images of the lithosphere, which in consequence induce an improved understanding of tectonic processes and geological prerequisites for the occurrence of natural resources. The high electrical conductivity of mobile belts and their relation to reactivated fault and detachment zones were often interpreted to characterize mobile belts as tectonic weak zones, which can accommodate stress and constitute zones along which continents can break. Recent breaking of the African continent can be studied on land across the East African rift; however, the lack of amphibian MT experiments across today’s margins does not allow for good resolution of remnants of continental breakup processes. Naturally, the regions and the focus of the MT studies in Africa are diverse, but they all contribute to the story of making and breaking a continent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The experiment is described in detail below.

References

  • Bailey D, Whaler K, Zengeni T (2000a) Comparison of geoelectric and seismic reflection models of the Zambezi Valley basins, northern Zimbabwe. Geophys J Int 142:898–914

    Article  Google Scholar 

  • Bailey D, Whaler KA, Zengeni T, Jones PC, Gwavava O (2000b) A magnetotelluric model of the Mana Pools Basin, Northern Zimbabwe. J Geophys Res 105(5):11,185–11,202

    Article  Google Scholar 

  • Banks R, Beamish D (1979) Melting in the crust and upper mantle beneath the Kenya Rift: evidence from Geomagnetic Deep Sounding experiments. J Geol Soc Lond 136:225–233

    Article  Google Scholar 

  • Banks R, Ottey P (1974) Geomagnetic deep sounding in and around the Kenya rift valley. Geophys J R Astron Soc 36:321–335

    Google Scholar 

  • Beamish D (1977) The mapping of induced currents around the Kenya rift: a comparison of techniques. Geophys J R Astron Soc 50:311–332

    Google Scholar 

  • Beattie J (1909) Report of the magnetic survey of South Africa. Royal Society of London. Cambridge University Press, London

    Google Scholar 

  • Becken M, Ritter O, Park SK, Bedrosian PA, Weckmann U, Weber M (2008) A deep crustal fluid channel into the san andreas fault system near parkfield, california. Geophys J Int. doi:10.1111/j.1365-246X.2008.03.754.x

  • Begg G, Griffin W, Natapov L, O’Reilly S, Grand S, O’Neill C, Hronsky J, Poudjom Djomani Y, Swain C, Deen T, Bowden P (2009) The lithospheric architecture of Africa: seismic tomography, mantle petrology, and tectonic evolution. Geosphere 5(1). doi:10.1130/GES00179.1

  • Berdichevsky M, Dmitriev V (2008) Models and methods of magnetotellurics. Springer, Berlin

    Book  Google Scholar 

  • Bleeker W (2003) The late Archean record: a puzzle in 35 pieces. Lithos 71:99–134

    Article  Google Scholar 

  • Boerner DE, Kurtz RD, Craven JA (1996) Electrical conductivity and Paleo-Proterozoic foredeeps. J Geophys Res 101(B6):13,775–13,792

    Article  Google Scholar 

  • Bostick F (1977) A simple almost exact method of MT analysis, chap. Magnetotelluric methods. Geophysics reprint series 5, society of exploration geophysicists, Tulsa, OK, USA, Workshop on electrical methods in geothermal exploration, U.S.G.S., Contract No. 14080001 8 359

  • Branch T, Ritter O, Weckmann U, Sachsenhofer R, Schilling F (2007) The Whitehill formation: a high conductivity marker in the Karoo Basin. South Afr J Geol 110:465–476

    Article  Google Scholar 

  • Brasse H, Rath V (1997) Audiomagnetotelluric investigations of shallow sedimentary basins in northern Sudan. Geophys J Int 128:301–314

    Article  Google Scholar 

  • Bruhn D, Raab S, Schilling F (2004) Electrical resistivity of dehydrating serpentinite. Eos Trans AGU 85(47), Fall Meeting Supplement, Abstract T41B–1176

    Google Scholar 

  • Burke K, Dewey J, Kidd W (1977) World distribution of sutures: the sites of former oceans. Tectonophysics 40:69–99

    Article  Google Scholar 

  • Caldwell TG, Bibby HM, Brown C (2004) The magnetotelluric phase tensor. Geophys J Int 158(2):457–469. doi:10.1111/j.1365-246X.2004.02281.x

    Article  Google Scholar 

  • Carlson R, Grove T, de Wit M, Gurney J (1997) Program to study the crust and mantle of the archean craton in Southern Africa. EOS Trans Am Geophys Union 77:237–277

    Google Scholar 

  • Catuneanu O, Wopfner H, Eriksson P, Cairncross B, Rubidge B, Smith R, Hancox P (2005) The Karoo basins of south-central Africa. J Afr Earth Sci 43:211–253

    Article  Google Scholar 

  • Constable S (2006) SEO3: a new model of olivine electrical conductivity. Geophys J Int 166:435–437

    Article  Google Scholar 

  • Corner B (1989) The Beattie anomaly and its significance for crustal evolution within the Gondwana framework. Extended Abstracts, South African Geophysical Association, First Technical Meeting, pp 15–17

  • de Beer J, Gough D (1980) Conductive structures in southernmost Africa: a magnetometer array study. Geophys J R Astron Soc 63:479–495

    Google Scholar 

  • de Beer J, van Zijl J, Huyssen R, Hugo P, Joubert S, Meyer R (1976) A magnetometer array study in South-West Africa, Botswana and Rhodesia. Geophys J R Astron Soc 45:1–17

    Google Scholar 

  • de Beer J, van Zijl J, Gough D (1982) The southern cape conductive belt (South Africa): its composition, origin and tectonic significance. Tectonophysics 83:205–225

    Article  Google Scholar 

  • de Beer JH, Gough DI, van Zijl JSV (1975) An electrical conductivity anomaly and rifting in southern Africa. Nature 255:678–680

    Article  Google Scholar 

  • de Beer JH, Huyssen RMJ, van Zijl JSV (1982) Magnetometer array studies and deep Schlumberger soundings in the Damara orogenic belt, South West Africa. Geophys J R Astron Soc 70:11–29

    Google Scholar 

  • de Wit M (1998) On Archean granites, greenstones, cratons and tectonics: does the evidence demand a verdict?. Precambrian Res 91:181–226

    Article  Google Scholar 

  • de Wit M, Horsfield B (2006) Inkaba yeAfrica project surveys sector of earth from core to space. EOS Trans 87(11):113–117

    Article  Google Scholar 

  • Dewey J, Burke K (1974) Hot spots and continental break-up: implications for collisional orogeny. Geology 2:57–60

    Article  Google Scholar 

  • Doumouya V, Vassal J, Cohen Y, Fambitakoye O, Menvielle M (1998) Equatorial electrojet at African longitudes: first results from magnetic measurements. Ann Geophys 16:658–676

    Article  Google Scholar 

  • Drury M, Hyndman R (1979) The electrical resistivity of oceanic basalts. J Geophys Res 84:4537–4545

    Article  Google Scholar 

  • Eglington B (2006) Evolution of the Namaqua-Natal belt, southern Africa: a geochronological and isotope geochemical review. J Afr Earth Sci 46:93–111

    Article  Google Scholar 

  • ELEKTB Group (1997) KTB and the electrical conductivity of the crust. J Geophys Res 102(B8):18289–18305

    Article  Google Scholar 

  • Evans R, Jegen M, Garcia X, Matsuno T, Elsenbeck J, Worzewski T (2010) Magnetotelluric measurements in the Alboran sea. In: Abstract T23C-2284 presented at 2010 Fall Meeting, AGU, San Francisco, Calif., 13-17 Dec

  • Evans R, Jones A, Garcia X, Muller M, Hamilton M, Evans SFS, Spratt J, Webb S, Jelsma H, Hutchins D (2011) Electrical lithosphere beneath the Kaapvaal craton, southern Africa. J Geophys Res 116:B04105. doi:10.1029/2010JB007883

  • Foley SF, Buhre S, Jacob DE (2003) Evolution of the archaean crust by delamination and shallow subduction. Nature 421:249–252

    Google Scholar 

  • Furnes H, de Wit M, Staudigel H, Rosing M, Muehlenbachs K (2007) A vestige of earth’s oldest ophiolite. Science 315:1704–1707

    Article  Google Scholar 

  • Fyfe W, Leonardos O (1973) Ancient metamorphic-migmatite belts of the Brazilian African coasts. Nature 244:doi:10.1038/244501a0

  • Haak V, Hutton VRS (1986) Electrical resistivity in continental lower crust. In: Dawson JB (ed) The nature of the lower continental crust. Spec. Publ, vol. 24, Geol. Soc. London, pp 35–49

  • Hamilton W (1998) Archean magmatism and deformation were not products of plate tectonics. Precambrian Res 91:143–179

    Article  Google Scholar 

  • Hamilton M, Jones A, Evans R, Evans S, Fourie C, Garcia X, Mountford A, Spratt J, The SAMTEX MT Team (2006) Electrical anisotropy of South African lithosphere compared with seismic anisotropy from shear-wave splitting analyses. Phys Earth Planet Inter 158(2–4):226–239

    Article  Google Scholar 

  • Harvey J, de Wit M, Stankiewicz J, Doucoure C (2001) Structural variations of the crust in the Southwest Cape, deduced from seismic receiver functions. S Afr J Geol 104:231–242

    Article  Google Scholar 

  • Häuserer M, Junge A (2011) Electrical mantle anisotropy and crustal conductor: a 3-D conductivity model of the Rwenzori Region in western Uganda. Geophys J Int 185:1235–1242

    Article  Google Scholar 

  • Hautot S, Tarits P, Whaler K, Le Gall B, Tiercelin J, Le Turdu C (2000) Deep structure of the Baringo rift basin (central Kenya) from three-dimensional magnetotelluric imaging: Implications for rift evolution. J Geophys Res 105:23493–23518

    Article  Google Scholar 

  • Hautot S, Whaler K, Gebru W, Dessisa M (2006) The structure of a Mesozoic basin beneath the Lake Tana area, Ethiopia, revealed by magnetotelluric imaging. J Afr Earth Sci 44:331–338

    Article  Google Scholar 

  • Hjelt S-E (1988) Regional EM studies in the 80’s. Surv Geophys 9:349–387

    Article  Google Scholar 

  • Hutton R (1976) Induction studies in rifts and other active regions. Acta Geodaet Geophys Hung 11:347–376

    Google Scholar 

  • Hyndman R, Currie C, Mazzotti S (2005) Subduction zone backarcs, mobile belts, and orogenic heat. GSA Today 15(2):4–10

    Google Scholar 

  • Jones A, Evans R, Muller M, Hamilton M, Miensopust M, Garcia X, Cole P, Ngwisanyi T, Hutchins D, Fourie C, Jelsma H, Evans S, Aravanis T, Pettit W, Webb S, Wasborg J, The SAMTEX Team (2009) Area selection for diamonds using magnetotellurics: examples from southern Africa. Lithos 112: doi:10.1016/j.lithos.2009.06.011

  • Kalberkamp U (2010) Magnetotelluric measurements to explore for deeper structures of the Tendaho geothermal field, Afar, NE Ethiopia. In: Ritter O, Weckmann U (eds) Proceedings of the 23rd Schmucker-Weidelt-Colloquium for electromagnetic depth research 2009, vol. 23, pp 131–136. http://bib.gfz-potsdam.de/emtf/2009/pdf/Kalberkamp.pdf

  • Kato Y, Nakamura K (2003) Origin and global tectonic significance of early archean cherts from the Marble bar greenstone belt, Pilbara Craton, Western Australia. Precambrian Res 125(3-4):191–243

    Article  Google Scholar 

  • Kiyan D, Jones A, Fullea J, Hogg C, Ledo J, Sinischalchi A, Campanya J, PICASSO Phase II Team (2010) Crustal and lithospheric imaging of the Atlas Mountains of morocco inferred from magnetotelluric data. In: Abstract T23C-2281 presented at 2010 Fall Meeting, AGU, San Francisco, CA 13–17 Dec

  • Kobussen AF, Griffin WL, O’Reilly SY, Shee SR (2008) Ghosts of lithospheres past; imaging an evolving lithospheric mantle in Southern Africa. Geology 36(7):515–518

    Article  Google Scholar 

  • Korja T, Engels M, Zhamaletdinov A, Kovtun A, Palshin N, Smirnov M, Tokarev A, Asming V, Vanyan L, Vardaniants I, and The BEAR Working Group (2002) Crustal conductivity in fennoscandia: a compilation of a database on crustal conductance in the fennoscandian shield. Earth Planets Space 54:535–558

    Google Scholar 

  • Lambiase J (1989) The framework of African rifting during the Phanerozoic. J Afr Earth Sci (and the Middle East), doi:10.1016/S0899-5362(89)80023-5

  • Lenardic A, Moresi L, Mühlhaus H (2000) The role of mobile belts for the longevity of deep cratonic lithosphere: the crumple zone model. Geophys Res Lett 27(8):1235–1238

    Article  Google Scholar 

  • Lithgow-Bertelloni C, Silver P (1998) Dynamic topography, plate driving forces and the African superswell. Nature 395:269–272

    Article  Google Scholar 

  • Losecke W, Knödel K, Müller W (1988) Magnetotelluric survey in the northern Zambezi valley of Zimbabwe. Tech. Rep. 84.2171.1, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, Germany

  • Maguire P, Ebinger C, Stuart G, Mackenzie G, Whaler K, Kendall JM, Khan M, Fowler C, Klemperer S, Keller G, Harder S, Furman T, Mickus K, Asfaw L, Ayele A, Abebe B (2003) Geophysical project in Ethiopia studies continental breakup. EOS 48(35):337, 342–343

    Google Scholar 

  • Meju MA, Sakkas V (2007) Heterogeneous crust and upper mantle across Kenya and the relationship to surface deformation as inferred from magnetotelluric imaging. J Geophys Res 112. doi:10.1029/2005JB004.028

  • Mekkawi M (2007) Estimating the subsurface structures around active faults at southwest Cairo using magnetotelluric sounding method. Geophys J Egypt Geophys Soc 5:144–156

    Google Scholar 

  • Mekkawi M, Schnegg P, Arafa-Hamed T, Elathy E (2005) Electrical structure of the tectonically active Kalabsha fault, Aswan, Egypt. Earth Planet Sci Lett 240:764–773

    Article  Google Scholar 

  • Mekkawi M, Elbohoty M, Aboud E (2007) Delineation of subsurface structures in the area of a hot spring, Central Sinai, Egypt based on Magnetotelluric and magnetic data. In: Proceedings of the 8th conference geology of Sinai for development, Ismailia, pp 29–39

  • Meqbel N, Ritter O, Weckmann U, Becken M, Munoz G (2008) The Deep Electrical Conductivity Structure of the Dead Sea Basin. Eos Trans. AGU, 89(53), Fall Meet. Suppl., Abstract T21A–1927

  • Meyer R, de Beer J (1987) Structure of the Bushveld complex from resistivity measurements. Nature 325:610–612

    Article  Google Scholar 

  • Miensopust M, Jones A, Muller M, Garcia X, Evans R (2011) Lithospheric structures and Precambrian terrane boundaries in northeastern Botswana revealed through magnetotelluric profiling as part of the Southern African magnetotelluric experiment. J Geophys Res 116. doi:10.1029/2010JB007740

  • Mugisha F, Ebinger C, Strecker M, Pope D (1997) Two-stage rifting in the Kenya rift: implications for half-graben models. Tectonophysics 278:61–81

    Article  Google Scholar 

  • Muller M, Jones A, Evans R, Grutter H, Hatton C, Garcia X, Hamilton M, Miensopust M, Cole P, Ngwisanyi T, Hutchins D, Fourie C, Jelsma H, Evans S, Aravanis T, Pettit W, Webb S, Wasborg J, Team TS (2009) Lithospheric structure, evolution and diamond prospectivity of the Rehoboth Terrane and western Kaapvaal Craton, southern Africa: Constraints from broadband magnetotellurics. Lithos 112. doi:10.1016/j.lithos.2009.06.023

  • Niblett E, Sayn-Wittgenstein C (1960) Variation of electrical conductivity with depth by the magnetotelluric method. Geophysics 25:998–1008

    Article  Google Scholar 

  • Nyblade A, Robinson S (1994) The African superswell. Geophys Res Lett 21:765–768

    Article  Google Scholar 

  • Ogunade S (1995) Analysis of geomagnetic variations in south-western Nigeria. Geophys J Int 121:162–172

    Article  Google Scholar 

  • Oni E, Agunloye O (1976) Results of recent studies of electrical conductivity of sub-surface structure in parts of Western and Mid-Western states of Nigeria. Pageoph 114:53–60

    Article  Google Scholar 

  • Oni E, Alabi A (1972) Preliminary results of the upper mantle conductivity structure in Nigeria. Phys Earth Planet Inter 5:179–183

    Article  Google Scholar 

  • Paton D, Underhill J (2004) Role of crustal anisotropy in modifying the structural and sedimentological evolution of extensional basins: the Gamtoos Basin, South Africa. Basin Res 16:339–359. doi:10.1111/j.1365-2117.2004.00237.x

    Article  Google Scholar 

  • Petrick W, Pelton W, Ward S (1977) Ridge regression inversion applied to crustal resistivity sounding data from South Africa. Geophysics 42:995–1005

    Article  Google Scholar 

  • Pitts B, Maher M, de Beer J, Gough D Interpretation of magnetic, gravity and magnetotelluric data across the Cape Fold Belt and Karoo Basin. In: Wit M, Ransome I (eds) Inversion tectonics of the cape fold belt, Karoo and cretaceous basins of Southern Africa. pp 27–32 Balkema, Rotterdam, (1992)

    Google Scholar 

  • Prave AR (1996) Tale of three cratons: tectonostratigraphic anatomy of the Damara orogen in northwestern Namibia and the assembly of Gondwana. Geology 24:1115–1118

    Article  Google Scholar 

  • Richardson S, Shirey S (2008) Continental mantle signature of Bushveld magmas and coeval diamonds. Nature 453:910–913

    Article  Google Scholar 

  • Ritter O, Ryberg T, Weckmann U, Hoffmann-Rothe A, Abueladas A, Garfunkel Z, DESERT Research Group (2003a) Geophysical images of the dead sea transform in Jordan reveal an impermeable barrier for fluid flow. Geophys Res Lett 30(14):1741. doi:10.1029/2003GL017541

    Article  Google Scholar 

  • Ritter O, Weckmann U, Vietor T, Haak V (2003b) A magnetotelluric study of the Damara belt in Namibia 1. regional scale conductivity anomalies. Phys Earth Planet Inter 138:71–90. doi:10.1016/S0031-9201(03)00078-5

    Article  Google Scholar 

  • Ritter O, Hoffmann-Rothe A, Bedrosian PA, Weckmann U, Haak V (2005) Electrical conductivity images of active and fossil fault zones. In: Bruhn D, Burlini L (eds) in High-Strain zones: structure and physical properties, vol 245. Geological Society of London Special Publications, pp 165–186

  • Ritz M (1983) Use of the Magnetotelluric method for a better understanding of the West African Shield. J Geophys Res 88:10,625–10,633

    Article  Google Scholar 

  • Ritz M (1984) A high conductivity anomaly on the West African Craton. J Geophys 55:182–184

    Google Scholar 

  • Rooney D, Hutton V (1976) A magnetotelluric and magneto-variational study of the Gregory Rift Valley, Kenya. Geophys J R Astron Soc 51:91–119

    Google Scholar 

  • Rosendahl B (1989) Architecture of continental rifts with special reference to East Africa. Annu Rev Earth Planet Sci 15:445–494

    Google Scholar 

  • Sakkas V, Meju M, Khan M, Haak V, Simpson F (2002) Magnetotelluric images of the crustal structure of Chyulu Hills volcanic field, Kenya. Tectonophysics 346:169–185

    Article  Google Scholar 

  • Schwarz G, Mehl H, Ramdani F, Rath V (1992) Electrical resistivity structure of the eastern Moroccan Atlas system and its tectonic implications. Geologische Rundschau 81:221–235

    Article  Google Scholar 

  • Silver P, Fouch M, Gao S, Schmitz M, The Kaapvaal Seismic Group (2004) Seismic anisotropy, mantle fabric, and the magmatic evolution of Precambrian southern Africa. South Afr J Geol 107:45–58

    Article  Google Scholar 

  • Silver PG (1996) Seismic anisotropy beneath the continents: probing the depths of geology. Annu Rev Earth Planet Sci 24:385–432

    Article  Google Scholar 

  • Simpson F (2000) A three-dimensional model of the southern Kenya rift: departure from two dimensionality as a possible consequence of a rotating stress field. J Geophys Res 105(B8):19321–19334

    Article  Google Scholar 

  • Simpson F, Haak V, Khan M, Sakkas V, Meju MA (1997) The KRISP-94 magnetotelluric survey of early 1995: first results. Tectonophysics 278:261–271

    Article  Google Scholar 

  • Stern R, Bleeker W (1998) Age of the world’s oldest rocks refined using Canada’s SHRIMP: the acasta gneiss complex, Northwest Territories, Canada. Geosci Can 25:27–31

    Google Scholar 

  • Stesky RM, Brace WF (1973) Electrical conductivity of serpentinized rocks to 6   kbars. J Geophys Res 78:7614–7621

    Article  Google Scholar 

  • Telford W, Geldart L, Sheriff R (1990) Applied geophysics. Cambridge University Press, Cambridge

    Google Scholar 

  • Turner B (1999) Tectonostratigraphical development of the Upper Karooforeland basin: orogenic unloading versus thermally-induced Gondwana rifting. J Afr Earth Sci 28:215–238

    Article  Google Scholar 

  • Valley J, Peck W, King E, Wilde S (2002) A cool early earth. Geology 30(4). doi:10.1130/0091-7613(2002)030

  • Van Kranendonk, MJ, Smithies, H, Bennett, V (eds) (2007) Earth’s oldest rocks, developments in precambrian geology. Elsevier, Amsterdam

    Google Scholar 

  • van Zijl J (1969) A deep Schlumberger sounding to investigate the electrical structure of the crust and upper mantle in South Africa. Geophysics 34:450–462

    Article  Google Scholar 

  • van Zijl J (1977a) Resistivity and the continental crust in Southern Africa. Nature 265:614–615

    Article  Google Scholar 

  • van Zijl J (1977b) Electrical studies of the deep crust in various tectonic provinces of Southern Africa. In The Earth’s crust: its nature and physical properties, John G. Heacock, United States Office of Naval Research,Colorado School of Mines

  • van Zijl JS, de Beer JH (1983) Electrical structure of the Damara orogen and its tectonic significance. Geol Soc South Afr Spec Publ 11:369–379

    Google Scholar 

  • Vauchez A, Tommasi A, Barruol G (1998) Rheological heterogeneity, mechanical anisotropy and deformation of the continental lithosphere. Tectonophysics 296:61–86

    Article  Google Scholar 

  • Weckmann U, Ritter O, Haak V (2003a) Images of the magnetotelluric apparent resistivity tensor. Geophys J Int 155:456–468

    Article  Google Scholar 

  • Weckmann U, Ritter O, Haak V (2003b) A magnetotelluric study of the Damara Belt in Namibia 2. MT phases over 90° reveal the internal structure of the Waterberg Fault /Omaruru Lineament. Phys Earth Planet Inter 138:91–112

    Article  Google Scholar 

  • Weckmann U, Jung A, Branch T, Ritter O (2007a) Comparison of electrical conductivity structures and 2D magnetic model along two profiles crossing the Beattie Magnetic Anomaly, South Africa. South Afr J Geol 110:449–464

    Article  Google Scholar 

  • Weckmann U, Ritter O, Jung A, Branch T, de Wit M (2007b) Magnetotelluric measurements across the beattie magnetic anomaly and the Southern Cape Conductive Belt, South Africa. J Geophys Res 112:B05,416. doi:10.1029/2005JB003975

  • Weckmann U, Ritter O, Becken M, Pek J, de Wit M (2008) Electrical conductivity images of South African continental collision zones. Eos Trans. AGU, 89(53), Fall Meeting Supplement, Abstract GP41A–0779

    Google Scholar 

  • Weckmann U, Ritter O, Chen X, Tietze K, de Wit M (2011) Deep crustal structures of the Cape Fold Belt, South Africa. Terra Nova in review

  • Whaler K, Hautot S (2006) Structure and evolution of the East African Rift in Afar Volcanic province. chap. The electrical resistivity structure of the crust beneath the northern Ethiopian rift, Geol Soc Spec Publ 259, pp 295–307

  • Whaler K, Zengeni T (1993) An audiofrequency magnetotelluric traverse across the Mana Pools Basin, northern Zimbabwe. Geophys J Int 114:673–686

    Article  Google Scholar 

  • Wilson JT (1966) Did the atlantic close and then re-open? Nature 211:676–681

    Article  Google Scholar 

  • Ziegler PA, Cloetingh S (2004) Dynamic processes controlling evolution of rifted basins. Earth Sci Rev 64(1–2):1–50. doi:10.1016/S0012-8252(03)00041-2

    Article  Google Scholar 

Download references

Acknowledgments

I wish to thank the organizing committee of the 20th EM Induction Workshop for the opportunity to prepare this review. I would also like to thank all colleagues from the EM community who have drawn my attention to a range of studies. My thanks go to Mark Muller and an anonymous reviewer for their constructive comments and suggestions. The manuscript has benefited from Oliver Ritter’s comments. I also thank the guest editors, Toivo Korja, Nick Palshin and Gad El Gady, for their efforts in guiding this manuscript toward publication. Finally, I would like to dedicate this paper to three colleagues, who had been or still are very important for my personal interest in Africa and the way my ties to this continent have evolved over the years: Rosemary Hutton stands for me for excellent and integrating science in Africa. Her work testifies her affection for Africa and its people. Sam Ogunade: He was the first colleague from Africa I met as a young student. For many years, we kept in touch during his visits to Germany. And finally, Rod Green: Without his dedication and support, many of my experiments in South Africa would not have been possible. His hospitality and the way he made me understand the African way of living made me feel at home in South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ute Weckmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weckmann, U. Making and Breaking of a Continent: Following the Scent of Geodynamic Imprints on the African Continent Using Electromagnetics. Surv Geophys 33, 107–134 (2012). https://doi.org/10.1007/s10712-011-9147-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-011-9147-x

Keywords

Navigation