Skip to main content
Log in

Synthesis of Novel Representatives of Phosphoryl Guanidine Oligonucleotides

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Novel representatives of phosphoryl guanidine oligonucleotide derivatives were prepared in this study. A synthetic scheme has been proposed and implemented suitable for the preparation of a wide range of diaminocarbenium azides starting from various secondary amines for subsequent incorporation of tetrasubstituted guanidine residues into the oligonucleotides by the Staudinger reaction. A number of factors which affected the yield of the phosphoryl guanidine derivative were identified, in particular, the size of the alkyl substituents in the azide used, the purity of the azide, and the conditions for elimination of the protecting cyanoethyl group before the final deprotection of the oligonucleotide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Yin, W. and Rogge, M., Clin. Transl. Sci., 2019, vol. 12, pp. 98–112. https://doi.org/10.1111/cts.12624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Heo, Y.A., Drugs, 2020, vol. 80, pp. 329–333. https://doi.org/10.1007/s40265-020-01267-2

    Article  PubMed  Google Scholar 

  3. Balwani, M., Sardh, E., Ventura, P., Peiro, P.A., Rees, D.C., Stolzel, U., Bissell, D.M., Bonkovsky, H.L., Windyga, J., Anderso, K.E., Parker, C., Silver, S.M., Keel, S.B., Wang, J.D., Stein, P.E., Harper, P., Vassiliou, D., Wang, B., Phillips, J., Ivanova, A., Langendonk, J.G., Kauppinen, R., Minder, E., Horie, Y., Penz, C., Chen, J.H., Liu, S.B., Ko, J.J., Sweetser, M.T., Garg, P., Vaishnaw, A., Kim, J.B., Simon, A.R., Gouya, L., and Investigators, E., N. Engl. J. Med., 2020, vol. 382, pp. 2289–2301. https://doi.org/10.1056/NEJMoa1913147

    Article  CAS  PubMed  Google Scholar 

  4. Rinaldi, C. and Wood, M.J.A., Nat. Rev. Neurol., 2018, vol. 14, pp. 9–21. https://doi.org/10.1038/nrneurol.2017.148

    Article  CAS  PubMed  Google Scholar 

  5. Deleavey, G.F. and Damha, M.J., Chem. Biol., 2012, vol. 19, pp. 937–954. https://doi.org/10.1016/j.chembiol.2012.07.011

    Article  CAS  PubMed  Google Scholar 

  6. Roy, S. and Caruthers, M., Molecules, 2013, vol. 18, pp. 14268–14284. https://doi.org/10.3390/molecules181114268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kupryushkin, M.S., Pyshnyi, D.V., and Stetsenko, D.A., Acta Naturae, 2014, vol. 6, pp. 116–118. https://doi.org/10.32607/20758251-2014-6-4-116-118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dyudeeva, E.S., Kupryushkin, M.S., Lomzov, A.A., Pyshnaya, I.A., and Pyshnyi, D.V., Russ. J. Bioorg. Chem., 2019, vol. 45, pp. 709–718. https://doi.org/10.1134/S1068162019060153

    Article  CAS  Google Scholar 

  9. Stetsenko, D., Kupryshkin, M., and Pyshnyi, D., WO Patent no. WO2016028187A1, 2016.

  10. Wieland, G. and Simchen, G., Liebigs Ann. Chem., 1985, vol. 1985, pp. 2178–2193. https://doi.org/10.1002/jlac.198519851108

  11. Kitamura, M. and Murakami, K., Org. Synth., 2015, vol. 92, p. 171. https://doi.org/10.15227/orgsyn.092.0171

    Article  CAS  Google Scholar 

  12. El-Faham, A., Org. Prep. Proced. Int., 1998, vol. 30, pp. 477–481. https://doi.org/10.1080/00304949809355316

    Article  CAS  Google Scholar 

  13. Bazhenov, M.A., Shernyukov, A.V., Kupryushkin, M.S., and Pyshnyi, D.V., Russ. J. Bioorg. Chem., 2019, vol. 45, pp. 699–708. https://doi.org/10.1134/S1068162019060074

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank the Joint Center for Collective Use of the Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, for the mass spectroscopic analysis of the oligonucleotides and A.S. Chubarov (junior research worker of the Biomedical Chemistry Laboratory of the Institute of Chemical Biology and Fundamental Medicine) for recording the NMR spectra.

Funding

This study was supported by the base budgetary financing of the Program of the Basic Scientific Research of the State Scientific Academies in 2013–2020, projects nos. АААА-А17-117020210024-8. M.S. Kupryushkin thanks the Russian Scientific Foundation (project no. 19-14-00204) for the support of the synthesis and characterization of the native and modified oligonucleotides.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Kupryushkin.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving human participants and animals performed by any of the authors.

Conflict of Interests

M.S. Kupryushkin and D.V. Pyshnyi are cofounders of OOO NooGen. This company develops the technology for the preparation of phosphoryl guanidine oligonucleotides and their application. S.A. Zhukov declares that he has no conflicts of interest.

Additional information

Translated by L. Onoprienko

Abbreviations: ADMP, hexafluorophosphate of 2-azido-1,3-dimethylimidazolinium; CPG, controlled-pore glass; DIPEA, N,N-diisopropylethylamine; NA, nucleic acid; rpHPLC, reversed-phase high performance liquid chromatography.

Corresponding author: phone: +7 (923) 243-26-23.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, S.A., Pyshnyi, D.V. & Kupryushkin, M.S. Synthesis of Novel Representatives of Phosphoryl Guanidine Oligonucleotides. Russ J Bioorg Chem 47, 380–389 (2021). https://doi.org/10.1134/S1068162021020291

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162021020291

Keywords:

Navigation