Skip to main content
Log in

A Novel Method of Covalent Lysozyme Immobilization for the Development of Materials for Medical Applications

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Different methods of covalent lysozyme immobilization have been compared to choose an optimal approach to the development of a material suitable for medical applications in extracorporeal therapy. A novel method for lysozyme immobilization on a polymeric agarose matrix has been proposed, which provides the effective action of lysozyme on bacterial cells and eliminates the leakage of the enzyme from the material. The resultant immobilized lysozyme exhibits bacteriolytic activity toward Gram-positive bacteria Micrococcus luteus and Gram-negative bacteria Escherichia coli. During the immobilization of the enzyme, a broadening of the pH optimum of its activity occurs. The compatibility of immobilized lysozyme with human whole blood has been shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Donovan, D.M., Recent Pat. Biotechnol., 2007, vol. 1, pp. 113–122.

    Article  CAS  PubMed  Google Scholar 

  2. Fischetti, V.A., Curr. Opin. Microbiol., 2008, vol. 11, pp. 393–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Love, M.J., Bhandari, D., Dobson, R.C.J., and Billington, C., Antibiotics, 2018, vol. 7, pp. 1–25.

    Article  CAS  Google Scholar 

  4. Dekina, S.S., Romanovskaya, I.I., Ovsepyan, A.M., Molodaya, A.L., and Pashkin, I.I., Biotechnol. Acta, 2014, vol. 7, pp. 69–73.

    Article  CAS  Google Scholar 

  5. Bayazidi, P., Almasi, H., and Asl, A.K., Int. J. Biol. Macromol., 2018, vol. 107, pp. 2544–2255.

    Article  CAS  PubMed  Google Scholar 

  6. Kao, K.Ch., Lin, T.S., and Mou, Ch.Y., J. Phys. Chem. C, 2014, vol. 118, p. 6734.

    Article  CAS  Google Scholar 

  7. Jiang, S.S., Qin, Ya., Yang, J., Li, M., Xiong, L., and Sun, Q.J., Food Chem., 2017, vol. 221, p. 1507.

    Article  CAS  PubMed  Google Scholar 

  8. Lian, Z.X., Ma, Zh.S., Wei, J., and Liu, H., Proc. Biochem., 2012, vol. 47, pp. 201–208.

    Article  CAS  Google Scholar 

  9. Wu, Y. and Daeschel, M.A., J. Food Sci., 2007, vol. 72, pp. M369–M374.

    Article  CAS  PubMed  Google Scholar 

  10. Minier, M., Salmain, M., Yacoubi, N., Barbes, L., Methivier, C., Zanna, S., and Pradier, C.M., Langmuir, 2005, vol. 21, pp. 5957–5965.

    Article  CAS  PubMed  Google Scholar 

  11. Levashov, P.A., Ovchinnikova, E.D., Fried, D.A., Azmuko, A.A., Afanasjeva, M.I., Kotkina, T.I., Afanasjeva, O.I., Adamova, I.Yu., and Pokrovsky, S.N., Russ. J. Bioorg. Chem., 2015, vol. 41, pp. 494–499.

    Article  CAS  Google Scholar 

  12. Kleopina, G.V., Kravchenko, N.A., and Kaverzneva, E.D., Bull. Acad. Sci. USSR. Div. Chem. Sci., 1965, vol. 14, pp. 806–812.

    Article  Google Scholar 

  13. Zaninetti, C., Biino, G., Noris, P., Melazzini, F., Civaschi, E., and Balduini, C.L., Haematologica, 2015, vol. 100, pp. 338–340.

    Article  CAS  Google Scholar 

  14. Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 1982.

    Google Scholar 

  15. Porath, J. and Axén, R., Methods Enzymol., 1976, vol. 44, pp. 19–45.

    Article  CAS  PubMed  Google Scholar 

  16. Guisán, J.M., Enzyme Microb. Technol., 1988, vol. 10, pp. 375–382.

    Article  Google Scholar 

  17. Levashov, P.A., Sedov, S.A., Belogurova, N.G., Levashov, A.V., and Shlpovskov, S., Anal. Chem., 2010, vol. 82, pp. 2161–2163.

    Article  CAS  PubMed  Google Scholar 

  18. Matolygina, D.A., Dushutina, N.S., Ovchinnikova, E.D., Eremeev, N.L., Belogurova, N.G., Atroshenko, D.L., Smirnov, S.A., Savin, S.S., Tishkov, V.I., Levashov, A.V., and Levashov, P.A., Moscow Univ. Chem. Bull., 2018, vol. 73, pp. 47–52.

    Article  Google Scholar 

  19. Matsuura, K., Asano, Y., Yamada, A., and Naruse, K., Sensors, 2013, vol. 13, pp. 2484–2493.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Federal Program “Studies and Developments in Priority Areas of the Development of the Scientific and Technological Complex of Russia for Years 2014–2020,” the topic “Creation of Novel Medicinal Sorption Materials for Extracorporeal Methods of Treatment of Sepsis, which Combine the Antimicrobial Action and Capacity for Sorption of Bacterial Toxins.” Application code 2017-14-576-0053-142. Unique project identifier RFMEFI57417X0181. Agreement no. 14.574.21.0181.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Levashov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by S. Sidorova

Corresponding author: phone: +7 (916) 67-14-704, e-mail: levashov@yahoo.com.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levashov, P.A., Matolygina, D.A., Ovchinnikova, E.D. et al. A Novel Method of Covalent Lysozyme Immobilization for the Development of Materials for Medical Applications. Russ J Bioorg Chem 45, 101–106 (2019). https://doi.org/10.1134/S1068162019020055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162019020055

Keywords:

Navigation