Skip to main content

Multi-Point Covalent Immobilization of Enzymes on Glyoxyl Agarose with Minimal Physico-Chemical Modification: Stabilization of Industrial Enzymes

  • Protocol
  • First Online:
Immobilization of Enzymes and Cells

Abstract

Stabilization of enzymes via immobilization techniques is a valuable approach in order to convert a necessary protocol (immobilization) into a very interesting tool to improve key enzyme properties (stabilization). Multipoint covalent attachment of each immobilized enzyme molecule may promote a very interesting stabilizing effect. The relative distances among all enzyme residues involved in immobilization have to remain unaltered during any conformational change induced by any distorting agent. Amino groups are very interesting nucleophiles placed on protein surfaces. The immobilization of enzyme through the region having the highest amount of amino groups (Lys residues) is key for a successful stabilization. Glyoxyl groups are small aliphatic aldehydes that form very unstable Schiff’s bases with amino groups, and they do not seem to be useful for enzyme immobilization at neutral pH. However, under alkaline conditions, glyoxyl supports are able to immobilize enzymes via a first multipoint covalent immobilization through the region having the highest amount of lysine groups. Activation of supports with a high surface density of glyoxyl groups and the performance of very intense enzyme–support multipoint covalent attachments are here described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34

    Article  CAS  Google Scholar 

  2. Wong SS, Wong LJ (1992) Chemical cross-linking and the stabilization of proteins and enzymes. Enzym Microb Technol 14:866–874

    Article  CAS  Google Scholar 

  3. Klibanov AM (1983) Immobilized enzymes against termal inactivation. Adv Appl Microbiol 29:1–28

    Article  CAS  Google Scholar 

  4. Alvaro G, Fernández-Lafuente R, Blanco RM, Guisán JM (1990) Immobilization- stabilization of penicillin acylase from E. coli. Appl Biochem Biotechnol 26:181–195

    Article  CAS  Google Scholar 

  5. Guisán JM, Alvaro G, Fernández-Lafuente R, Rosell CM, Garcia-Lopez JL, Tagliatti A (1993) Stabilization of a heterodymeric enzyme by multi-point covalent immobilization: penicillin G acylase from Kluyvera citrophila. Biotechnol Bioeng 42:455–464

    Article  Google Scholar 

  6. Blanco RM, Guisán JM (1988) Protecting effect of competitive inhibitors during very intense insolubilized enzyme-activated support multipoint attachments: trypsin (amine)-agarose (aldehyde) system. Enzym Microb Technol 10:227–232

    Article  CAS  Google Scholar 

  7. Guisán JM, Bastida A, Cuesta AC, Fernández- Lafuente R, Rosell CM (1991) Immobilization-stabilization of chymotrypsin by covalent attachment to aldehyde agarose gels. Biotechnol Bioeng 39:75–84

    Google Scholar 

  8. Tardioli PW, Pedroche J, Giordano RL, Fernández-Lafuente R, Guisán JM (2003) Hydrolysis of proteins by immobilized-stabilized alcalase®-glyoxyl agarose. Biotechnol Prog 19:352–360

    Article  CAS  Google Scholar 

  9. Pedroche J, Yust MM, Girón-Calle J, Vioque J, Alaiz M, Mateo C, Guisán JM, Millán F (2002) Stabilization-immobilization of carboxypeptidase to aldehyde-agarose gels. A practical example in the hydrolysis of casein. Enzym Microb Technol 31:711–718

    Article  CAS  Google Scholar 

  10. Tardioli PW, Fernández-Lafuente R, Guisán JM, Giordano RLC (2003) Design of new immobilized-stabilized carboxypeptidase a derivative for production of aromatic free hydrolysates of proteins. Biotechnol Prog 19:565–574

    Article  CAS  Google Scholar 

  11. Bes T, Gomez-Moreno C, Guisán JM, Fernández-Lafuente R (1995) Selective enzy-metic oxidations: stabilization by multipoint covalent attachment of ferredoxin NAD- reductasa: an interesting cofactor recycling enzyme. J Mol Catal 98:161–169

    Article  CAS  Google Scholar 

  12. Guisán JM, Polo E, Agudo J, Romero MD, Alvaro G, Guerra MJ (1997) Immobilization-stabilization of thermolysin onto activated agarose gels. Biocatal Biotransformation 15:159–173

    Article  Google Scholar 

  13. Betancor L, Hidalgo A, Fernández-Lorente G, Mateo C, Rodríguez V, Fuentes M, Fernández-Lafuente R, Guisán JM (2003) The use of physicochemical tools to solve enzyme stability problems alters the choice of the optimal enzyme: stabilization of D-aminoacid oxidase. Biotechnol Prog 19:784–788

    Article  CAS  Google Scholar 

  14. Betancor L, Hidalgo A, Fernández-Lorente G, Mateo C, Rodríguez V, Fuentes M, Fernández-Lafuente R, Guisán JM (2003) Preparation of a stable biocatalyst of bovine liver catalase. Biotechnol Prog 19:763–767

    Article  CAS  Google Scholar 

  15. Hidalgo A, Betancor L, Lopez-Gallego F, Moreno R, Berenguer J, Fernández-Lafuente R, Guisán JM (2003) Preparation of a versatile biocatalyst of immobilized and stabilized catalase from Thermus thermophilus. Enzym Microb Technol 33:278–285

    Article  CAS  Google Scholar 

  16. Otero C, Ballesteros A, Guisán JM (1991) Immobilization/stabilization of lipase from Candida rugosa. Appl Biochem Biotechnol 19:163–175

    Article  Google Scholar 

  17. Suh C-W, Choi G-S, Lee E-K (2003) Enzymatic cleavage of fusion protein using immobilized urokinase covalently conjugated to glyoxyl-agarose. Biotechnol Appl Biochem 37:149–155

    Article  CAS  Google Scholar 

  18. Toogood HS, Taylor IN, Brown RC, Taylor SJC, McCague R, Littlechild JA (2002) Immobilisation of the thermostable L-aminoacylase from Thermus litotalis to generate a reusable industrial biocatalyst. Biocatal Biotransformation 20:241–249

    Article  CAS  Google Scholar 

  19. Ichikawa S, Takano K, Kuroiwa T, Hiruta O, Sato S, Mukataka S (2002) Immobilization and stabilization of chitosanase by multipoint attachment to agar gel support. J Biosci Bioeng 93:201–206

    Article  CAS  Google Scholar 

  20. Kuroiwa T, Ichikawa S, Sato S, Mukataka S (2003) Improvement of the yield of physiologically active oligosaccharides in continuous hydrolysis of chitosan using immobilized chitosanases. Biotechnol Bioeng 84:121–127

    Article  CAS  Google Scholar 

  21. Kuroiwa T, Ichikawa S, Sosaku H, Sato S, Mukataka S (2002) Factors affecting the composition of oligosaccharides produced in chitosan hydrolysis using immobilized chitosanases. Biotechnol Prog 18:969–974

    Article  CAS  Google Scholar 

  22. Mateo C, Abian O, Bernedo M, Cuenca E, Fuentes M, Fernandez-Lorente G, Palomo JM, Grazu V, Pessela BCC, Giacomini C, Irazoqui G, Villarino A, Ovsejevi K, Batista-Viera F, Fernandez-Lafuente R, Guisán JM (2005) Some special features of glyoxyl supports to immobilize proteins. Enzym Microb Technol 34:456–462

    Article  Google Scholar 

  23. Mateo C, Abian O, Fernandez-Lafuente R, Guisan JM (2000) Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favouring additional multipoint covalent attachment. Enzym Microb Technol 26:509–515

    Article  CAS  Google Scholar 

  24. Blanco RM, Guisán JM (1988) Stabilization of enzymes by multipoint covalent attachment to agarose-aldehyde gels. Borohydride reduction of trypsin-agarose derivatives. Enzym Microb Technol 11:360–366

    Article  Google Scholar 

  25. Alvaro G, Blanco RM, Fernández-Lafuente R, Guisán JM (1990) Immobilization-stabilization of penicillin G acylase from E. Appl Biochem Biotechnol 26:210–214

    Article  Google Scholar 

  26. Guisán JM, Alvaro G, Fernández-Lafuente R, Guisán JM (1993) Stabilization of a heterodymeric enzyme by multi-point covalent immobilization: penicillin G acylase from Kluyvera citrophila. Biotechnol Bioeng 42:455–464

    Article  Google Scholar 

  27. Bes T, Gomez-Moreno C, Guisán JM, Fernández-Lafuente R (1995) Selective enzymetic oxidations: stabilization by multipoint covalent attachment of ferredoxin NAD-reductasa: an interesting cofactor recycling enzyme. J Mol Catal 98:161–169

    Article  CAS  Google Scholar 

  28. Fernández-Lafuente R, Cowan DA, Wood ANP (1995) Hyperstabilization of a thermophilic esterase by multipoint covalent attachment. Enzym Microb Technol 17(1995):366–372

    Article  Google Scholar 

  29. Mansur M, Garcia JL, Guisán JM, Garcia-Calvo E (1998) Cloning, expression and immobilization of glutamate racemase from Lactobacillus fermenti for the production of D-glutamate from L-glutamate. Biotechnol Lett 20:57–61

    Article  CAS  Google Scholar 

  30. Bolivar JM, Wilson L, Ferrarotti SA, Fernandez-Lafuente R, Guisan JM, Mateo C (2006) Stabilization of a formate dehydrogenase by covalent immobilization on highly activated glyoxyl-agarose supports. Biomacromolecules 7:669–673

    Article  CAS  Google Scholar 

  31. Bolivar JM, Wilson L, Ferrarotti SA, Guisán JM, Fernández-Lafuente R, Mateo C (2006) Improvement of the stability of alcohol dehydrogenase by covalent immobilization on glyoxyl-agarose. J Biotechnol 125:85–94

    Article  CAS  Google Scholar 

  32. Abian O, Grazú V, Hermoso J, González R, García JL, Fernández-Lafuente R, Guisán JM (2004) Stabilization of penicillin G acylase from Escherichia coli: site-directed mutagenesis of the protein surface to increase multipoint covalent attachment. Appl Environ Microbiol 70:1249–1251

    Article  CAS  Google Scholar 

  33. López-Gallego F, Montes T, Fuentes M, Alonso N, Grazu V, Betancor L, Guisan JM (2005) Chemical increase of the amount of reactive groups on enzyme surface to improve its stabilization via multipoint covalent attachment. J Biotechnol 116:1–10

    Article  Google Scholar 

  34. Guisan JM (1988) Agarose-aldehyde gels as supports for immobilization-stabilization of enzymes. Enzym Microb Technol 10:375–382

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose M. Guisan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

López-Gallego, F., Fernandez-Lorente, G., Rocha-Martín, J., Bolivar, J.M., Mateo, C., Guisan, J.M. (2020). Multi-Point Covalent Immobilization of Enzymes on Glyoxyl Agarose with Minimal Physico-Chemical Modification: Stabilization of Industrial Enzymes. In: Guisan, J., Bolivar, J., López-Gallego, F., Rocha-Martín, J. (eds) Immobilization of Enzymes and Cells. Methods in Molecular Biology, vol 2100. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0215-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0215-7_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0214-0

  • Online ISBN: 978-1-0716-0215-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics