Skip to main content
Log in

Role of laccase from Coriolus versicolor MTCC-138 in selective oxidation of aromatic methyl group

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Now a day, laccases are the most promising enzymes in the area of biotechnology and synthesis. One of the best applications of laccases is the selective oxidation of aromatic methyl group to aldehyde group. Such transformations are valuable because it is difficult to stop the reaction at aldehyde stage. Chemical methods used for such biotransformations are expensive and give poor yields. But, the laccase-catalyzed biotransformations of such type are non-expensive and yield is excellent. Authors have used crude laccase obtained from the liquid culture growth medium of fungal strain Coriolus versicolor MTCC-138 for the biotransformations of toluene, 3-nitrotoluene, and 4-chlorotoluene to benzaldehyde, 3-nitrobenzaldehyde, and 4-chlorobenzaldehyde, respectively, instead of purified laccase because purification process requires much time and cost. This communication reports that crude laccase can also be used in the place of purified laccase as effective biocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riva, S., Trends Biotechnol., 2006, vol. 24, no. 5, pp. 219–226.

    Article  CAS  PubMed  Google Scholar 

  2. Baldrian, P., FEMS Microbiol. Rev., 2006, vol. 30, pp. 215–242.

    Article  CAS  PubMed  Google Scholar 

  3. Dwivedi, U.N., Singh, P., Pandey, V.P., and Kumar, A., J. Mol. Cat. B: Enzymatic, 2011, vol. 68, no. 2, pp. 117–128.

    Article  CAS  Google Scholar 

  4. Yoshida, H., J. Chem. Soc., 1883, vol. 43, pp. 472–486.

    Article  CAS  Google Scholar 

  5. Messerschmidt, A., Multi-Copper Oxidases, Singapore: World Scientific, 1997.

    Book  Google Scholar 

  6. Mayer, A.M. and Staples, R.C., Phytochemistry, 2002, vol. 60, pp. 551–565.

    Article  CAS  PubMed  Google Scholar 

  7. Bertrand, G., C. R. Heabd. Seances Acad. Sci., 1896, vol. 123, pp. 463–464.

    CAS  Google Scholar 

  8. Givaudan et al., FEMS Micribiol. Lett., 1993, vol. 108, pp. 205–210.

    Article  CAS  Google Scholar 

  9. Perkinson, N., Smith, I., Weave, R. and Edwards, J.P., Insect. Biochem. Mol. Biol., 2001, vol. 31, pp. 57–63.

    Article  Google Scholar 

  10. Edens, W.A., Goins, T.Q., Dooley, D., and Henson, J.M., Appl. Environ. Microbiol., 1999, vol. 65, no. 7, pp. 3071–3074.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Iyer, G. and Chattoo, B.B., FEMS Microbiol. Lett., 2003, vol. 227, no. 1, pp. 121–126.

    Article  CAS  PubMed  Google Scholar 

  12. Binz, T. and Canevascini, G., Curr. Microbiol., 1997, vol. 35, no. 5, pp. 278–281.

    Article  CAS  Google Scholar 

  13. Palonen, H., Saloheimo, M., Viikari, L. and Kruus, K., Enz. Microb. Technol., 2003, vol. 33, no. 6, pp. 854–862.

    Article  CAS  Google Scholar 

  14. Kiiskinen, L.L., Viikari, L., and Kruus, K., Appl. Microbiol. Biotechnol., 2002, vol. 59, no. 2–3, pp. 198–204.

    CAS  PubMed  Google Scholar 

  15. Thakker, G.D., Evans, C.S. and Rao, K.K., Appl. Microbiol. Biotechnol., 1992, vol. 37, no. 3, pp. 321–323.

    Article  CAS  Google Scholar 

  16. Froehnerand, S.C. and Eriksson, K.E., J. Bacteriol., 1974, vol. 120, no. 1, pp. 458–465.

    Google Scholar 

  17. Molitoris, H.P. and Esser, K., Archiv. für. Mikrobiologie, 1970, vol. 72, no. 3, pp. 267–296.

    Article  CAS  PubMed  Google Scholar 

  18. Banerjee, U.C. and Vohra, R.M., Folia Microbiologica, 1999, vol. 36, no. 4, pp. 343–346.

    Article  Google Scholar 

  19. Rodrι-guez, A., Falco-n, M.A., Carnicero, A., Perestelo, F., de la Fuente, G., and Trojanowski, J., Appl. Microbiol. Biotechnol., 1996, vol. 45, no. 3, pp. 399–403.

    Article  Google Scholar 

  20. Scherer, M. and Fischer, R., Archiv. Microbiol, 1998, vol. 170, no. 2, pp. 78–84.

    Article  CAS  Google Scholar 

  21. Abdel-Raheem, A. and Shearer, C.A., Fungal Diversity, 2002, vol. 11, pp. 1–19.

    Google Scholar 

  22. Wandrey, C., Liese, A. and Kihumbu, D., Org. Proc. Res. Develop., 2000, vol. 4, pp. 285–290.

    Article  Google Scholar 

  23. Couto, S.R. and Harrera, J.L.T., Biotechnol. Advan., 2006, vol. 24, no. 500–513.

    Google Scholar 

  24. Xu, F., Ind. Biotechnol., 2005, vol. 1, pp. 38–50.

    Article  CAS  Google Scholar 

  25. Acunzo, D.F. and Galli, C., J. Europ. Biochem., 2003, vol. 270, pp. 3634–3640.

    Article  Google Scholar 

  26. Morozova, O.V., Shumakovich, G.P., Shleev, S.V. and Yaropolov, Y.I., Biochem. Microbiol., 2003, vol. 43, pp. 523–535.

    Article  Google Scholar 

  27. Coniglio, A., Galli, C. and Gentili, P., J. Mol. Cat. B: Enzymatic, 2008, vol. 50, no. 1, pp. 40–49.

    Article  CAS  Google Scholar 

  28. Mikolasch, A., Niedermeyer, T.H.J.. Lalk, M., Witt, S., Seefeld, S., Hammer, E., Schauer, F., Gesell, M., Hessel, S., Julich, W.D. and Lindoquist, D.U., Chem. Pharma. Bullet., 2006, vol. 54, no. 5, pp. 632–638.

    Article  CAS  Google Scholar 

  29. Mikolasch, A., Niedermeyer, T.H.J., Lalk, M., Witt, S., Seefeld, S., Hammer, E., Schauer, F., Salazar, G., Hessel, S., Julich, W.D. and Lindequist, U., Chem. Pharma. Bullet., 2007, vol. 55, no. 3, pp. 412–416.

    Article  CAS  Google Scholar 

  30. Mikolasch, A., Hammer, E., Jonas, U., Popowski, K., Stielow, A. and Schaner, F., Tetrahedron, 2002, vol. 58, pp. 7589–7593.

    Article  CAS  Google Scholar 

  31. Potthest, A., Rosenanu, T., Chen, C.-L., and Gratzl, J.S., J. Org. Chem., 1995, vol. 60, pp. 4320–4321.

    Article  Google Scholar 

  32. Fritz-Langhals Kunath, B., Tetrahedron Lett., 1998, vol. 39, pp. 5955–5956.

    Article  Google Scholar 

  33. Sahay, R., Yadav, R.S.S., and Yadava, S., Appl. Biochem. Biotechnol., 2012, vol. 166, pp. 563–575.

    Article  CAS  PubMed  Google Scholar 

  34. Catalogue of Strains-2000, 5th ed., Chandigarh: Microbial Type Culture Collection and Gene Bank Institute of Microbial Technology.

  35. Coll, M.P., Fernandez-Abalos, J.M., Villomueva, J.R., Somtamariaa, R., and Perez, P., Appl. Environ. Microbiol., 1993, vol. 59, pp. 2607–2613.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi Lata Bharati.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaurasia, P.K., Singh, S.K. & Bharati, S.L. Role of laccase from Coriolus versicolor MTCC-138 in selective oxidation of aromatic methyl group. Russ J Bioorg Chem 40, 288–292 (2014). https://doi.org/10.1134/S1068162014020034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162014020034

Keywords

Navigation