Skip to main content
Log in

Measurement of Seasonal Variation of Outdoor Gamma Radiation Dose Rate Level and Assessment of Consequent Health Hazards in Panchkula, Haryana, India

  • Published:
Radiochemistry Aims and scope

Abstract

A systematic measurement of outdoor gamma radiations in Panchkula district of Haryana, India, was done using a radiation monitor based on Geiger–Muller technique. The gamma dose rate was found to be in the range from 70.0 ± 3.5 to 168.0 ± 8.4 nSv/h. The annual effective dose (AED) due to the outdoor gamma radiation in Panchkula district was computed to range from 0.086 ± 0.004 to 0.206 ± 0.010 mSv/year. The value of excess lifetime cancer risk (ELCR) was found to be in the range from 0.322 × 10–3 to 0.773 × 10–3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. National Council on Radiation Protection and Measurements (NCRP), Bethesda, MD Uncertainties in Fatal Cancer Risk Estimates Used in Radiation Protection: NCRP Report no. 126, 1997.

  2. Kapdan, E., Altinsoy, N., Karahan, G., and Yuksel, A., J. Radioanal. Nucl. Chem., 2018, vol. 318, p. 1033. https://doi.org/10.1007/s10967-018-6060-5

    Article  CAS  Google Scholar 

  3. Gabdo, H.T., Ramli, A.T., Sanusi, M.S., Saleh, M.A., and Garba, N.N., J. Radioanal. Nucl. Chem., 2014, vol. 299, p. 1793. https://doi.org/10.1007/s10967-014-2928-1

    Article  CAS  Google Scholar 

  4. Jeelani, G., Hassan, W., Saleem, M., Sahu, S.K., Pandit, G.G., and Lone, S.A., J. Radioanal. Nucl. Chem., 2021. https://doi.org/10.1007/s10967-021-07647-6

    Article  Google Scholar 

  5. Sources and Effects of Ionizing Radiation, New York: United Nations Scientific Committee on the Effect of Atomic Radiation (UNSCEAR), 2000.

  6. Solehah, A.R. and Samat, S.B., J. Radioanal. Nucl. Chem., 2018, vol. 315, p. 127. https://doi.org/10.1007/s10967-017-5654-7

    Article  CAS  Google Scholar 

  7. Licínio, M. V., Freitas, A.C., Evangelista, H., Costa-Gonçalves, A., Miranda, M., and Alencar, A.S., J. Environ. Radioact., 2013, vol. 126, p. 32. https://doi.org/10.1016/j.jenvrad.2013.07.012

    Article  CAS  PubMed  Google Scholar 

  8. Sources and Effects of Ionizing Radiation: UNSCEAR Report to the General Assembly, with Scientific Annexes, New York: United Nations, 1994.

  9. Sources and Effects of Ionizing Radiation: UNSCEAR Report to General Assembly, with Scientific Annexes, New York: United Nations, 1993.

  10. Jindal, M.K., Sar, S.K., Baghel, T., and Wadhwa, D.S., J. Geol. Soc. India, 2021, vol. 97, p. 85. https://doi.org/10.1007/s12594-021-1629-y

    Article  Google Scholar 

  11. Kumar, J.M., Kumar, S.S., Arun, A., Shweta, S., Megha, S., and Vijita, D., Res. J. Chem. Environ., 2018, vol. 22, p. 22

    CAS  Google Scholar 

  12. Sharma, P., Kumar Meher, P., and Prasad Mishra, K., J. Radiat. Res. Appl. Sci., 2014, vol. 7, p. 595. https://doi.org/10.1016/j.jrras.2014.09.011

    Article  Google Scholar 

  13. Jindal, M.K., and Sar, S.K., J. Radioanal. Nucl. Chem., 2020, vol. 325, p. 121. https://doi.org/10.1007/s10967-020-07205-6

    Article  CAS  Google Scholar 

  14. Kaur, M., Kumar, A., Mehra, R., and Mishra, R., Nucl. Technol. Radiat. Prot., 2018, vol. 33, p. 106. https://doi.org/10.2298/NTRP1801106K

    Article  CAS  Google Scholar 

  15. Kobya, Y., Taşkın, H., Yeşilkanat, C.M., and Çevik, U., Hum. Ecol. Risk Assess., 2015, vol. 21, p. 2077. https://doi.org/10.1080/10807039.2015.1017876

    Article  CAS  Google Scholar 

  16. Ground Water Information Booklet Panchkula District, Haryana, North Western Region, Chandigarh: Central Ground Water Board (CGWB), 2013.

  17. International Commission on Radiological Protection (ICRP) Publication 103, Ann. ICRP, 2007, 37(2–4)-F.

  18. Tanwer, N., Anand, P., Batra, N., Kant, K., Gautam, Y.P., and Sahoo, S.K., J. Radioanal. Nucl. Chem., 2021. https://doi.org/10.1007/s10967-021-07960-0

    Article  Google Scholar 

  19. Sankaran, A.V., Jayaswal, B., Nambi, K.S.V., and Sunata, C.M., U, Th and K Distributions Inferred from Regional geology Gnd the Terrestrial Radiation Profiles in India, Bombay: Bhabha Atomic Research Centre, 1986.

    Google Scholar 

  20. Rangaswamy, D.R., Srinivasa, E., Srilatha, M.C., and Sannappa, J., Radiat. Prot. Environ., 2015, vol. 38, p. 154. https://doi.org/10.4103/0972-0464.176152

    Article  Google Scholar 

  21. Monica, S., Visnu Prasad, A., Soniya, S., and Jojo, P., Radiat. Prot. Environ., 2016, vol. 39, p. 38. https://doi.org/10.4103/0972-0464.185180

    Article  Google Scholar 

  22. Mercier, J.F., Tracy, B.L., d’Amours, R., Chagnon, F., Hoffman, I., Korpach, E.P., Johnson, S., and Ungar, R.K., J. Environ. Radioact., 2009, vol. 100, p. 527. https://doi.org/10.1016/j.jenvrad.2009.03.002

    Article  CAS  PubMed  Google Scholar 

  23. Fujinami, N., Environ. Int., 1996, vol. 22, p. 181. https://doi.org/10.1016/S0160-4120(96)00106-7

    Article  Google Scholar 

  24. Greenfield, M.B., Domondon, A.T., Tsuchiya, S., and Tomiyama, M., J. Appl. Phys., 2003, vol. 93, p. 5733. https://doi.org/10.1063/1.1563313

    Article  CAS  Google Scholar 

  25. Paatero, J., Radiat. Prot. Dosim., 2000, vol. 87, p. 273. https://doi.org/10.1093/oxfordjournals.rpd.a033008

    Article  CAS  Google Scholar 

  26. Rishi, M.S., Keesari, T., Sharma, D.A., Pant, D., and Sinha, U.K., J. Radioanal. Nucl. Chem., 2017, vol. 311, p. 1937. https://doi.org/10.1007/s10967-017-5178-1

    Article  CAS  Google Scholar 

  27. Pant, D., Keesari, T., Sharma, D., Rishi, M., Singh, G., Jaryal, A., Sinha, U.K., Dash, A., and Tripathi, R.M., J. Radioanal. Nucl. Chem., 2017, vol. 313, p. 635. https://doi.org/10.1007/s10967-017-5284-0

    Article  CAS  Google Scholar 

  28. Tanwer, N., Khyalia, P., Deswal, M., and Laura, J., Rasayan J. Chem., 2022. vol. 15, p. 343. https://doi.org/10.31788/RJC.2022.1516608

    Article  Google Scholar 

  29. Taskin, H., Karavus, M., Ay, P., Topuzoglu, A., Hidiroglu, S., and Karahan, G., J. Environ. Radioact., 2009, vol. 100, p. 49. https://doi.org/10.1016/j.jenvrad.2008.10.012

    Article  CAS  PubMed  Google Scholar 

  30. Age-Dependent Doses to Members of the Public from Intake of Radionuclides, part 5: Compilation of lngestion and Inhalation Dose Coefficients: ICRP Publication 72, Oxford: Pergamon, 1996.

  31. Cuttler, J.M., Dose-Response, 2013, vol. 11, p. 432. https://doi.org/10.2203/dose-response.13-008.Cuttler

    Article  PubMed  Google Scholar 

  32. Feinendegen, L.E., Radiat. Prot. Dosim., 2003, vol. 104, p. 337. https://doi.org/10.1093/oxfordjournals.rpd.a006197

    Article  CAS  Google Scholar 

  33. Feinendegen, L.E., Pollycove, M., and Neumenn, R.D., Dose-Response, 2012, vol. 557. https://doi.org/10.2203/dose-response.09-035.Feinendegen

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pandey, B.N., Sarma, H.D., Shukla, D., and Mishra, K.P., Int. J. Low Radiat., 2006, vol. 2, p. 111. https://doi.org/10.1504/IJLR.2006.007901

    Article  CAS  Google Scholar 

  35. Mishra, K.P., Ahmed, M., and Hill, R.P., Int. J. Radiat. Biol., 2008, vol. 84, p. 441. https://doi.org/10.1080/09553000802061293

    Article  CAS  PubMed  Google Scholar 

  36. Murphy, B.Y.J.B. and Morton, J.J., J. Exper. Med., 1915. https://doi.org/10.1084/jem.29.1.25

    Article  Google Scholar 

  37. Calabrese, E.J., Wound Repair Regen., 2013, vol. 21, p. 180. https://doi.org/10.1111/j.1524-475X.2012.00842.x

    Article  PubMed  Google Scholar 

  38. Calabrese, E.J. and Calabrese, V., Int. J. Radiat. Biol., 2013, vol. 89, p. 287. https://doi.org/10.3109/09553002.2013.752595

    Article  CAS  PubMed  Google Scholar 

  39. Rodel, F., Frey, B., and Gaipl, U., Keilholz, L., Fournier, C., Manda, K., Schollnberger, H., Hildebrandt, G., and Rodel, C., Curr. Med. Chem., 2012, vol. 19, p. 1741. https://doi.org/10.2174/092986712800099866

    Article  CAS  Google Scholar 

  40. Calabrese, E.J. and Dhawan, G., Dose-Response, 2012, vol. 10, p. 626. https://doi.org/10.2203/dose-response.12-016.Calabrese

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to Aggarwal College Ballabgarh for providing all the facilities required to carry this project. Authors also aknowledge the contributions of Dr. J.S. Laura, Dr. Babita Khosla, and Dr. Meena Deswal, Department of Environmental Sciences, MDU, Rohtak for providing ArcGIS facility.

Funding

This study was funded by the Board Research in Nuclear Sciences, Department of Atomic Energy under National Uranium Project. Authors would like to acknowledge members of TSC-4, NRFCC, BRNS; HPD, HS&E Group, BARC, and NUP team members for their continuous support in the execution of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Anand.

Ethics declarations

The authors declare that they have no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanwer, N., Anand, P., Batra, N. et al. Measurement of Seasonal Variation of Outdoor Gamma Radiation Dose Rate Level and Assessment of Consequent Health Hazards in Panchkula, Haryana, India. Radiochemistry 64, 424–431 (2022). https://doi.org/10.1134/S1066362222030213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362222030213

Keywords:

Navigation