Skip to main content
Log in

Adsorption of Uranium from Sulfate Medium Using a Synthetic Polymer; Kinetic Characteristics

  • Published:
Radiochemistry Aims and scope

Abstract

Polyurethane was prepared from toluene diisocyanate (TDI) and triethanolamine esters. The equilibrium and kinetic characteristics of the uranium sorption onto polyurethane were determined. The adsorption factors were optimized. The adsorption capacity for uranium reaches 70 mg/g and agrees with the value obtained by fitting with the Langmuir isotherm (75 mg/g). The adsorption process follows pseudo-second-order rate equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Chang, L.C., Xue, Y., and Hsieh, F.H., J. Appl. Polym. Sci., 2001, vol. 80, pp. 10–19. https://doi.org/10.1002/1097-4628(20010404)80:1<10::AID-APP1068>3.0.CO;2-Y

    Article  CAS  Google Scholar 

  2. Ako, M. and Kennedy, J.P., J. Appl. Polym. Sci., 1989, vol. 37, pp. 1351–1361. https://doi.org/10.1002/app.1989.070370518

    Article  CAS  Google Scholar 

  3. Lligadas, G., Ronda, J.C., Galià, M., and Cádiz, V., Biomacromolecules, 2006, vol. 7, pp. 2420–2426. https://doi.org/10.1021/bm060402k

    Article  CAS  PubMed  Google Scholar 

  4. Guo, Y.S., Ma, X.Y., Wu, Z., Zhang, S.F., and Yang, X.P., China Leather, 2013, vol. 42, pp. 47–57. https://doi.org/10.4236/msce.2015.31013

    Article  CAS  Google Scholar 

  5. Naghash, H.J., Iravani, M., and Akhtarian, R., Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2014, vol. 44, pp. 927–934. https://doi.org/10.1080/17415993.2018.1513523

    Article  CAS  Google Scholar 

  6. Meiorin, C., Mosiewicki, M.A., and Aranguren, M.I., Polym. Test., 2013, vol. 32, pp. 249–255. https://doi.org/10.1002/pi.5033

    Article  CAS  Google Scholar 

  7. Silva, V.R., Mosiewicki, M.A., and Yoshida, M.I., Polym. Test., 2013, vol. 32, pp. 438–445. https://doi.org/10.4236/msce.2015.31013

    Article  CAS  Google Scholar 

  8. Zhang, M.Y., Chen, J.J., and Yang, L.C., PU Technol., 2011, vol. 9, pp. 70–73. https://doi.org/10.1039/x0xx00000x

    Article  Google Scholar 

  9. Zheng, J., Luo, J.X., and Zhou, D.W., Colloids Surf. A: Physicochem. Eng. Aspects, 2010, vol. 363, pp. 16–21. https://doi.org/10.1016/j.colsurfa.2010.04.001

    Article  CAS  Google Scholar 

  10. Anthemidis, A.N., Themelis, D.G., and Stratis, J.A., Talanta, vol. 54, pp. 37–43. https://doi.org/10.1134/S1061934807080175

    Article  CAS  Google Scholar 

  11. Anthemidis, A.N., Zachariadis, G.A., and Stratis, J.A., Talanta, 2002, vol. 58, pp. 831–840. https://doi.org/10.1016/s0039-9140(02)00373-9

    Article  CAS  PubMed  Google Scholar 

  12. Duran, A., Tuzen, T., and Soylak, M., J. Hazard. Mater., 2009, vol. 169, nos. 1–3, pp. 466–471. https://doi.org/10.1016/j.jhazmat.2009.03.119

    Article  CAS  PubMed  Google Scholar 

  13. Soylak, M. and Tuzen, M., J. Hazard. Mater., 2008, vol. 152, no. 2, pp. 656–661.

    Article  CAS  Google Scholar 

  14. Pan, L., Qin, Y.R., Hu, B., and Jiang, Z.C., Chem. Res. Chin. Univ., 2007, vol. 23, no. 4, pp. 399–403. https://doi.org/10.1021/ol502879c

    Article  CAS  Google Scholar 

  15. Candir, S., Narin, I., and Soylak, M., Talanta, 2008, vol. 77, pp. 289–293. https://doi.org/10.1016/j.talanta.2008.06.024

    Article  CAS  PubMed  Google Scholar 

  16. Otero-Romani, J., Moreda-Pineiro, A., Bermejo-Barrera, A., and Bermejo-Barrera, P., Anal. Chim. Acta., 2005, vol. 536, pp. 213–218. https://doi.org/10.1016/j.aca.2004.12.046

    Article  CAS  Google Scholar 

  17. Elci, L., Kartal, A.A., and Soylak, M., J. Hazard. Mater., 2008, vol. 153, nos. 1–2, pp. 454–461. https://doi.org/10.1016/j.jhazmat.2007.08.075

    Article  CAS  PubMed  Google Scholar 

  18. Chen, D., Hu, B., and Huang, C., Talanta, 2009, vol. 78, pp. 491–497. https://doi.org/10.1016/j.talanta.2008.11.046

    Article  CAS  PubMed  Google Scholar 

  19. Camel, V., Spectrochim. Acta B, 2003, vol. 58, pp. 1177–1233. https://doi.org/10.1016/S0584-8547Ž03.00072-7

    Article  Google Scholar 

  20. Mohammadi, S.Z., Afzali, D., and Pourtalebi, D., J. Anal. Chem., 2011, vol. 66, no. 7, pp. 620–625. https://doi.org/10.1134/S1061934811070094

    Article  CAS  Google Scholar 

  21. Bulut, Y. and Tez, Z., J. Environ. Sci., 2007, vol. 19, no. 2, pp. 160–166. https://doi.org/10.1016/S1001-0742(07)60026-6

    Article  CAS  Google Scholar 

  22. Li, A., Zhang, Q., Zhang, G., Chen, J., Fei, Z., and Liu, F., Chemosphere, 2002, vol. 47, pp. 981–989. https://doi.org/10.1016/S0045-6535(01)00222-3

    Article  CAS  PubMed  Google Scholar 

  23. Absalan, G. and Mehrdjardi, M.A., Sep. Purif. Technol., 2003, vol. 33, pp. 95–101. https://doi.org/10.1016/S1383-5866(03)00003-0

    Article  CAS  Google Scholar 

  24. Ensafi, A.A., Khayamian, T., and Karbasi, M.H., Anal. Sci., 2003, vol. 19, pp. 953–956. https://doi.org/10.2116/analsci.19.953

    Article  CAS  PubMed  Google Scholar 

  25. Gupta, V.K., Ganjali, M.R., Nayak, A., Bhushan, B., and Agarwal, S., Chem. Eng. J., 2012, vol. 197, pp. 330–342. https://doi.org/10.1016/j.cej.2012.04.104

    Article  CAS  Google Scholar 

  26. Gupta, V.K., Ali, I., Saleh, T.A., Nayak, A., and Agarwal, S., RSC Adv., 2012, vol. 2, no. 16, pp. 6380–6388. https://doi.org/10.1039/C2RA20340E

    Article  CAS  Google Scholar 

  27. Mahmoud, M.A., Gawad, E.A., Hamoda, E.A., and Haggag, E.A., J. Env. Sci., 2015, vol. 11, no. 4, pp. 128–136.

    CAS  Google Scholar 

  28. Ferri, T. and Sangiorgio, P., Anal. Chim. Acta, 1996, vol. 321, nos. 2–3, pp. 185–193. https://doi.org/10.1016/0003-2670(95)00569-2

    Article  CAS  Google Scholar 

  29. Pinto, M.L., Pires, J., Carvalho, A.P., Carvalho, M.B., and Bordado, J.C., J. Appl. Polym. Sci., 2004, vol. 92, p. 2045. https://doi.org/10.1002/app.20156

    Article  CAS  Google Scholar 

  30. Akl, M.A.A., Kenawy, I.M.M., and Lasheen, R.R., Microchem. J., 2004, vol. 78, pp. 143–156. https://doi.org/10.1016/j.microc.2004.03.019

    Article  CAS  Google Scholar 

  31. Gupta, V.K. and Nayak, A., Chem. Eng. J., 2012, vol. 180, pp. 81–90. https://doi.org/10.1016/j.cej.2011.11.006

    Article  CAS  Google Scholar 

  32. Sanghavi, B.J., Mobin, S.M., Mathur, P., Lahiri, G.K., and Srivastava, A.K., Biosens. Bioelectron., 2013, vol. 39, pp. 124–132. https://doi.org/10.1016/j.bios.2012.07.008

    Article  CAS  PubMed  Google Scholar 

  33. Krause, R.W.M., Mamba, B.B., Bambo, F.M., and Malefetse, T.J., Cyclodextrins: Chemistry and Physics, Hu, J., Ed., Kerala: Transworld Research Network, 2010.

    Google Scholar 

  34. Ngah, W.S., Teong, L.C., Toh, R.H., and Hanafiah, M.A.K.M., Chem. Eng. J., 2012, vol. 209, pp. 46–53. https://doi.org/10.1016/j.cej.2012.07.116

    Article  CAS  Google Scholar 

  35. Kiliaris, p. and Papaspyrides, C.D., Prog. Polym. Sci., 2010, vol. 35, pp. 902–958. https://doi.org/10.1016/j.progpolymsci.2010.03.001

    Article  CAS  Google Scholar 

  36. Saghi, M., Kaviani, D., Bagheri, Z., Padidaran, B., Bigtan, M.H., and Moghimi, S., Sci. J. Environ. Sci., 2015, vol. 4, no. 4, pp. 97–101. http://www.Sjournals.com

    Google Scholar 

  37. Olorundare, O.F., Msagati, T.A., Krause, R.W.M., Okonkwo, J.O., and Mam, B.B., Int. J. Environ. Sci. Technol., 2015, vol. 12, pp. 2389–2400. https://doi.org/10.1007/s13762-014-0645-5

    Article  CAS  Google Scholar 

  38. Shokry, S.A., El Morsi, A.K., Saba, M.S., Mohamed, R.R., and El Sorogy, H.E., Egypt. J. Petrol., 2015, vol. 24, pp. 145–154. https://doi.org/10.1016/j.ejpe.2015.05.008

    Article  Google Scholar 

  39. Puigdomenech, I., HYDRA (Hydrochemical Equilibrium Constant Database) and MEDUSA (Make Equilibrium Diagrams Using Sophisticated Algorithms) Programs, Sweden: Royal Inst. of Technology. https://www.kth.se/en/che/medusa/downloads-1.386254

  40. Marczenko, Z., Spectrophotometric Determination of the Elements, London: Wiley, 1976.

    Google Scholar 

  41. Khawassek, Y.M., Eliwa, A.A., Haggag, E.A., Mohamed, S.A., and Omar, S.A., Arab. J. Nuclear Sci. and Appl., 2017, vol 50, no. 4, pp. 100–112. http://esnsa-eg.com

    Google Scholar 

  42. Khawassek, Y.M., Eliwa, A.A., Haggag, E.A., Omar, S.A., and Mohamed, S.A., SN Appl. Sci., 2019, vol. 1, p. 51. https://doi.org/10.1007/s42452-018-0051-6.

    Article  Google Scholar 

  43. Sawsan, Dacrory, Haggag, El Sayed A., Masoud, Ahmed M., Abdo, Shaimaa M., Eliwa, Ahmed A., and Samir, Kamel, Cellulose, 2020, vol. 27, pp. 7093–7108.

    Article  Google Scholar 

  44. Abderrahim, O., Didi, M.A., and Villemin, D., J. Radioanal. Nucl. Chem., 2009, vol. 279, no. 1, pp. 237–244. https://doi.org/10.1007/s10967-007-7270-z

    Article  CAS  Google Scholar 

  45. Ansari, S.A., Mohapatra, P.K., and Manchanda, V.K., J. Hazard. Mater., 2009, vol. 161, nos. 2–3, pp. 1323–1329. https://doi.org/10.1016/j.jhazmat.2008.04.093

    Article  CAS  PubMed  Google Scholar 

  46. Metilda, P., Sanghamitra, K., Mary, G.J., Naidu, G.R.K., and Prasada Rao, T., Talanta, 2005, vol. 65, no. 1, pp. 192–200. https://doi.org/10.1016/j.talanta.2004.06.005

    Article  CAS  PubMed  Google Scholar 

  47. Venkatesan, K., Sukumaran, V., Antony, M.P., and Vasudeva Rao, P.R., J. Radioanal. Nucl. Chem., 2004, vol. 260, no. 3, pp. 443–450. https://doi.org/10.1023/B:JRNC.0000028201.35850.7

    Article  CAS  Google Scholar 

  48. Camacho, L.M., Deng, S., and Parra, R.R., J. Hazard. Mater., 2010, vol. 175, nos. 1–3, pp. 393–398. https://doi.org/10.1016/j.jhazmat.2009.10.017

    Article  CAS  PubMed  Google Scholar 

  49. Ferrah, N., Abderrahim, O., and Didi, M.A., Chem. J., 2015, vol. 5, no. 1, pp. 6–13. http://www.scientific-journals.co.uk

    CAS  Google Scholar 

  50. Cheira, M.F., J. Environ. Chem. Eng., 2015, vol. 3, pp. 642–652. https://doi.org/10.1016/j.jece.2015.02.003

    Article  CAS  Google Scholar 

  51. Haggag, E.A., Abdel-Samad, A.A., and Masoud, A.M., Int. J. Environ. Anal. Chem., 2019. https://doi.org/10.1080/03067319.2019.1636037

  52. Lagergren, S., Kung. Svenska Vetenskapsakad. Handl., 1898, vol. 24, no. 4, pp. 1–39.

    Google Scholar 

  53. Abdel-Samad, A.A., Abdel Aal, M.M., Haggag, E.A., Yosef, W.M., J. Basic Environ. Sci., 2020, vol. 7, pp. 140–153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. El-Sheikh, E. A. Haggag or N. R. Abd El-Rahman.

Ethics declarations

The authors declare that they have no conflicts of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sheikh, A.S., Haggag, E.A. & El-Rahman, N.R.A. Adsorption of Uranium from Sulfate Medium Using a Synthetic Polymer; Kinetic Characteristics. Radiochemistry 62, 499–510 (2020). https://doi.org/10.1134/S1066362220040074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362220040074

Keywords:

Navigation