Skip to main content
Log in

Production of Lutetium-177: Process Aspects

  • Published:
Radiochemistry Aims and scope

Abstract

Papers dealing with the 177Lu production technology are analyzed with the aim of evaluating the readiness of the existing processes to setting up regular large-scale production, which is the necessary condition for the progress of the market of 177Lu-based radiopharmaceuticals. This is now on the initial step of its development. The 177Lu production processes are based on irradiation of isotopically enriched 176Lu or 176Yb with reactor neutrons, followed by radiochemical processing of the irradiated targets. Specific production features are analyzed with emphasis on process aspects of the reactor and radiochemical stages. The evaluation shows that the presently reached level of the 177Lu production technology allows only the current demand of nuclear medicine for this radionuclide, corresponding to the initial step of its clinical use, to be met. Further growth of the market of 177Lu radiopharmaceuticals requires the upgrading of existing or construction of new facilities, which is possible only with significant improvement of both reactor and radiochemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pillai, M.R.A. and Knapp, F.F., Curr. Radiopharm., 2015, vol. 8, pp. 78–85.

    Article  CAS  PubMed  Google Scholar 

  2. Banerjee, S., Pillai, M.R.A., and Knapp, F.F., Chem. Rev., 2015, vol. 115, no. 8, pp. 2934–2974.

    Article  CAS  PubMed  Google Scholar 

  3. Anderson, J., Farmer, F.T., Inst, P., et al., Br. J. Radiol., 1960, pp. 374–378.

    Google Scholar 

  4. Pillai, M.R.A. and Knapp, F.F., J. Nucl. Med., 2011, vol. 52, no. 2, pp. 15–16.

    Google Scholar 

  5. The Supply of Medical Radioisotopes-An Economic Study of the Molybdenum-99 Supply Chain, Paris: OECD, 2010.

  6. Firestone, R., Table of Isotopes, New York: Wiley, 1996, 8th ed.

    Google Scholar 

  7. Tarasov, V.A., Romanov, E.G., and Kuznetsov, R.A., Izv. Samarsk. Nauchn. Tsentra Ross. Akad. Nauk, 2013, vol. 15,no. 4 (5), pp. 1084–1090.

    Google Scholar 

  8. Zhernosekov, K.P., Perego, R.S., Dvorakova, Z., et al., Appl. Radiat. Isot., 2008, vol. 66, pp. 1218–1220.

    Article  CAS  PubMed  Google Scholar 

  9. Dvorakova, Z., Production and chemical processing of 177Lu for nuclear medicine at the Munich research reactor FRM-II, Dissertation, Inst. of Radiochemistry, Technical Univ. of Munich, 2007.

    Google Scholar 

  10. Pawlak, D., Parus, J.L., Sasinowska, I., and Miko-lajczak, R., J. Radioanal. Nucl. Chem., 2004, vol. 261, no. 2, pp. 469–472.

    Article  CAS  Google Scholar 

  11. Toporov, Y.G., Tarasov, V.A., Andreyev, O.I., et al., in Research Coordination Meet. “Development of Therapeutic Radiopharmaceuticals Based on 177Lu for Radionuclide Therapy,” Vienna: IAEA, 2006, p. 152.

    Google Scholar 

  12. Dash, A., Pillai, M.R.A., and Knapp, F.F., Jr., Nucl. Med. Mol. Imag., 2015, vol. 49, no. 2, pp. 85–107.

    Article  CAS  Google Scholar 

  13. Tarasov, V.A., Andreev, O.I., Romanov, E.G., et al., Curr. Radiopharm., 2015, vol. 8, pp. 95–106.

    Article  CAS  PubMed  Google Scholar 

  14. Vysokopotochnyi issledovatel’skii reactor SM (SM High-Flux Research Reactor), Research Inst. of Atomic Reactors, 2008–2017. URL: http://niiar.ru/node/102/.

  15. Manual for Reactor Produced Radioisotopes: IAEA-TECDOC-1340, 2003.

  16. Chakraborty, S., Vimalnath, K.V., Lohar, Sh.P., et al., J. Radioanal. Nucl. Chem., 2014, vol. 302, no. 1, pp. 233–243.

    Article  CAS  Google Scholar 

  17. Dvorakova, Z., Henkelmann, R., Lin, X., et al., Appl. Radiat. Isot., 2008, vol. 66, pp. 147–151.

    Article  CAS  PubMed  Google Scholar 

  18. Knapp, F.F., Mirzadeh, S., Beets, A.L., et al., Proc. 5th Int. Conf. on Isotopes (5ICI), Chemaly, C., Allen, B.J., and Bonet, H., Eds., Brussels, April 25–29, 2005.

    Google Scholar 

  19. Duodu, G.O., Akaho, E.H.K., Serfor-Aman, Y., and Nyarko, B.J.B., Appl. Radiat. Isot., 2011, vol. 69, pp. 588–593.

    Article  CAS  Google Scholar 

  20. Das, T., Chakraborty, S., Banerjee, S., and Venkatesh, M.,Appl. Radiat. Isot., 2007, vol. 65, pp. 301–308.

    Article  CAS  Google Scholar 

  21. The Rules Governing Medicinal Products in the European Union, vol. 4: EU Guidelines for Good Manufacturing Practice for Medicinal Products for Human and Veterinary Use, URL: https://ec.europa.eu/health/documents/eudralex/vol-4_en.

  22. Marsh, J.K., J. Chem. Soc., 1942, pp. 398–401.

    Google Scholar 

  23. Marsh, J.K., J. Chem. Soc., 1943, pp. 8–10.

    Google Scholar 

  24. Lebedev, N.A., Novgorodov, A.F., Misiak, R., et al., Appl. Radiat. Isot., 2000, vol. 53, pp. 421–425.

    Article  CAS  PubMed  Google Scholar 

  25. Boldyrev, P.P., Kurochkin, A.V., Nurtdinov, R.F., et al., Vestn. Mosk Univ., Ser. 2: Khimiya, 2016, vol. 57, no. 3, pp. 184–190.

    CAS  Google Scholar 

  26. Boldyrev, P.P., Kurochkin, A.V., Proshin, M.A., et al., Radiochemistry, 2016, vol. 58, no. 5, pp. 498–505.

    Article  CAS  Google Scholar 

  27. Boldyrev, P.P., Zagryadskii, V.A., Erak, D.Yu., et al., At. Energy, 2017, vol. 121, no. 3, pp. 208–213.

    Article  CAS  Google Scholar 

  28. Lawless, F.R. and Wahlgren, M.A., J. Radioanal. Chem., 1970, vol. 5, pp. 11–20.

    Article  CAS  Google Scholar 

  29. Chakravarty, R., Das, T., Dash, A., and Venkatesh, M., Nucl. Med. Biol., 2010, vol. 27, pp. 811–820.

    Article  CAS  Google Scholar 

  30. Extraction Chromatography, Brown, T. and Ghersi-ni, G., Eds., Budapest: Akad. Kiado, 1975.

    Google Scholar 

  31. Ryabchikov, D.I. and Ryabukhin, V.A.,Analiticheskaya khimiya redkozemel ’nykh elementov i ittriya (Analytical Chemistry of Rare Earth Elements and Yttrium), Moscow: Nauka, 1966.

    Google Scholar 

  32. Triskem International, 2018, URL: http://www.triskem-international.com/ru/.

  33. Mirzadeh, S., Du, M., Beets, A.L., and Knapp, F.F., Patent US 6716353, April 6, 2004.

    Google Scholar 

  34. Horwitz, E.P., McAlister, D.R., Bond, A.H., et al., Appl. Radiat. Isot., 2005, vol. 63, pp. 23–36.

    Article  CAS  PubMed  Google Scholar 

  35. Le Van So and Morcos, N., J. Radioanal. Nucl. Chem., 2008, vol. 277, no. 3, pp. 651–661.

    Article  CAS  Google Scholar 

  36. Le Van So, Morcos, N., Zaw, M., et al., J. Radioanal. Nucl. Chem., 2008, vol. 277, no. 3, pp. 663–673.

    Article  CAS  Google Scholar 

  37. Le Van So, Morcos, N., Zaw, M., et al., J. Radioanal. Nucl. Chem., 2008, vol. 277, no. 3, pp. 675–683.

    Article  CAS  Google Scholar 

  38. Marx, S., Harfensteiler, M., Zhernosekov, K., and Nikula, T., US Patent Appl. 20140294700, Oct. 2, 2014.

    Google Scholar 

  39. Boldyrev, P.P., Vereshchagin, Yu.L, Zagryadskii, V.A., et al., Patent RU 2542733, Priority of Aug. 30, 2013.

    Google Scholar 

  40. Pillai, M.R.A., Chakraborty, S., Das, T., et al., Appl. Radiat. Isot., 2003, vol. 59, pp. 109–118.

    Article  CAS  PubMed  Google Scholar 

  41. Chakraborty, S., Chakravarty, R., Shetty, P., et al., J. Label. Compd. Radiopharm., 2016, vol. 59, no. 9, pp. 364–371.

    Article  CAS  Google Scholar 

  42. Dash, A., Chakravarty, R., Knapp, F.F., and Pillai, M.R.A., Curr. Radiopharm., 2015, vol. 8, pp. 107–118.

    Article  CAS  PubMed  Google Scholar 

  43. Dash, A., Chakraborty, S., Pillai, M.R.A., and Knapp, F.F., Cancer Biother. Radiopharm., 2015, vol. 30, no. 2, pp. 47–71.

    Article  CAS  PubMed  Google Scholar 

  44. Paras, J.L., Pawlak, D., Mikoliajczak, R., and Duat-ti, A., Curr. Radiopharm., 2015, vol. 8, pp. 86–94.

    Article  CAS  Google Scholar 

  45. Banerjee, S., Das, T., Chakraborty, S., and Venka-tesh, M., Radiochim. Acta, 2012, vol. 100, pp. 115–126.

    Article  CAS  Google Scholar 

  46. Breeman, W.A.P., de Jong, M., Visser, T.J., et al., Eur. J. Nucl. Med. Mol. Imag., 2003, vol. 30, no. 6, pp. 917–920.

    Article  CAS  Google Scholar 

  47. Asti, M., Tegoni, M., Farioli, D., et al., Nucl. Med. Biol, 2012, vol. 39, pp. 509–517.

    Article  CAS  PubMed  Google Scholar 

  48. Watanabe, S., Hashimoto, K., and Ishioka, N.S., J. Radioanal. Nucl. Chem., 2015, vol. 303, pp. 1519–1521.

    Article  CAS  Google Scholar 

  49. Rosh, F., J. Nucl. Med., 2010, vol. 51, no. 3, pp. 495–496.

    Article  Google Scholar 

  50. Chakravarty, R., Chakraborty, S., Dash, A., and Pillai, M.R.A., Nucl. Med. Biol., 2013, vol. 40, pp. 197–205.

    Article  CAS  PubMed  Google Scholar 

  51. Šimeček, J., Hermann, P., Wester, H.-J., and Notai, J., ChemMedChem, 2013, vol. 8, pp. 95–103.

    Article  CAS  PubMed  Google Scholar 

  52. Oehlke, E., Le, V.S., Lengkeek, N., et al., Appl. Radiat. Isot., 2013, vol. 82, pp. 232–238.

    Article  CAS  PubMed  Google Scholar 

  53. Eppard, E., Wuttke, M., Nicodemus, P.L., and Rosh, F., J. Nucl. Med., 2014, vol. 55, pp. 1023–1028.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by the Ministry of Education and Science of the Russian Federation, contract no. 02.G25.31.0155.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Kuznetsov.

Additional information

Conflict of Interest

The authors declare that they have no conflict of interest.

Russian Text © The Author(s), 2019, published in Radiokhimiya, 2019, Vol. 61, No. 4, pp. 273–285.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, R.A., Bobrovskaya, K.S., Svetukhin, V.V. et al. Production of Lutetium-177: Process Aspects. Radiochemistry 61, 381–395 (2019). https://doi.org/10.1134/S1066362219040015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362219040015

Keywords

Navigation