Skip to main content
Log in

Removal of radionuclides, macrocomponent metal ions, and organic compounds from solutions by nanofiltration

  • Published:
Radiochemistry Aims and scope

Abstract

Removal of Mg2+, Сa2+, Cu2+, Ni2+, Zn2+, Fe3+, and Pr3+ ions, tracer amounts of 137Cs, 85Sr, and 60Co radionuclides, and oxalate and ethylenediaminetetraacetate ions from solutions using a polymeric nanofiltration (NF) membrane produced by RM Nanotekh (Russia) was studied. The selectivity (S) of the NF membrane to multicharged metal cations is considerably higher than to single-charged cations. The NF membrane exhibits the highest selectivity (S = 94–97%) to triple-charged Fe3+ and Pr3+ ions and double-charged Cu2+ ions. The selectivity to double-charged Mg2+ and Zn2+ ions is somewhat lower (90–94% on the average). Among doublecharged cations, the NF membrane exhibits the lowest selectivity (80–88%) to Ni2+ and Cа2+ ions. The NF membrane shows high performance in retention of tracer amounts of Sr (S = 95%) and Co (S > 99%) radionuclides, and also of oxalate (S = 94.5%) and ethylenediaminetetraacetate (S = 97.5%) ions. Examples of using the nanofiltration method for removing 60Co from a model solution simulating NPP bottom residue and for removing transition metal impurities from a LiCl solution are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ryabchikov, B.E., Sovremennaya vodopodgotovka (Modern Water Treatment), Moscow DeLi Plyus, 2013.

    Google Scholar 

  2. Ryabchikov, B.E., Ochistka zhidkikh radioaktivnykh otkhodov (Decontamination of Liquid Radioactive Waste), Moscow DeLi Print, 2008.

    Google Scholar 

  3. Ershov, B.G., Gelis, V.M., Milyutin, V.V., et al., Vopr. Radiats. Bezopasn., 2009, no. 4, pp. 28–38.

    Google Scholar 

  4. Milyutin, V.V., Nekrasova, N.A., and Kaptakov, V.O., Radiochemistry, 2016, vol. 58, no. 1, pp. 30–33.

    Article  CAS  Google Scholar 

  5. Bryk, M.T. and Nigmatulin, R.R., Khim. Tekhnol. Vody, 1995, vol. 17, no. 4, pp. 375–396.

    CAS  Google Scholar 

  6. Al-Rashdi, B.A.M., Johnson, D.J., and Hilal, N., Desalination, 2013, vol. 315, pp. 2–17.

    Article  CAS  Google Scholar 

  7. Pérez-González, A., Ibáñez, R., Gómez, P., et al., J. Membr. Sci., 2015, vol. 473, pp. 16–27.

    Article  Google Scholar 

  8. Schwarzenbach, G. and Flaschka, H., Die komplexometrische Titration, Stuttgart Enke, 1965.

    Google Scholar 

  9. Lur’e, Yu.Yu., Analiticheskaya khimiya promyshlennykh stochnykh vod (Analytical Chemistry of Industrial Wastewaters), Moscow Khimiya, 1984.

    Google Scholar 

  10. Garcia, F., Ciceron, D., Saboni, A., and Alexandrova, S., Sep. Purif. Technol., 2006, vol. 52, pp. 196–200.

    Article  CAS  Google Scholar 

  11. Kokotov, Yu.A. and Pasechnik, V.A., Ravnovesie i kinetika ionnogo obmena (Equilibrium and Kinetics of Ion Exchange), Leningrad Khimiya, 1970.

    Google Scholar 

  12. Yaroshchuk, A.E., Membr. Technol., 1998, vol. 100, pp. 9–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Milyutin.

Additional information

Original Russian Text © V.V. Milyutin, V.O. Kaptakov, N.A. Nekrasova, 2016, published in Radiokhimiya, 2016, Vol. 58, No. 6, pp. 552–555.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milyutin, V.V., Kaptakov, V.O. & Nekrasova, N.A. Removal of radionuclides, macrocomponent metal ions, and organic compounds from solutions by nanofiltration. Radiochemistry 58, 645–648 (2016). https://doi.org/10.1134/S1066362216060126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362216060126

Keywords

Navigation