Skip to main content
Log in

Tomography in Soil Science: From the First Experiments to Modern Methods (A Review)

  • TOMOGRAPHY OF SOIL PORE SPACE
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract—

The article provides an overview of the use of computed tomography in the study of soils from the first works to the present time. The development of computed tomography in the field of hardware and methods for processing tomographic data—from the first attempts to analyze soil structure using tomographic sections of low quality to modern methods of segmentation and analysis of volumetric structures using specialized software, correlation functions and neural networks—is discussed. The purpose of the article is to show the possibilities of methods for processing tomographic data in relation to studies of soil structure and to analyze possible trends of their further development. The article presents examples from the world experience of using computed tomography for a broad variety of soils, shows various methods of data segmentation that have been used from the first studies to the recent ones. The specific terminology coined in the course of the evolution of the method and various morphometric indicators for 2D and 3D images are presented, and a forecast of the prospects for the method in the near future is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. E. B. Skvortsova, K. M. Gerke, D. V. Korost, and K. N. Abrosimov, “The pore space arrangement in podzolic horizons of loamy soils (analysis of 2D and 3D images),” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 71, 65–79 (2013).

    Google Scholar 

  2. E. B. Skvortsova and N. V. Kalinina, “Micromorphometric types of the pore space in virgin and plowed loamy soils,” Eurasian Soil Sci. 37, 980–991 (2004).

    Google Scholar 

  3. Explanatory Dictionary of Soil Science, Ed. by A. A. Rode (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  4. K. N. Abrosimov, K. M. Gerke, I. N. Semenkov, and D. V. Korost, “Otsu’s algorithm in the segmentation of pore space in soils based on tomographic data,” Eurasian Soil Sci. 54, 560–571 (2021).

    Article  Google Scholar 

  5. S. H. Anderson and C. J. Gantzer, “Determination of soil water content by X-ray computed tomography and magnetic resonance imaging,” Irrig. Sci. 10 (1), 63–71 (1989).

    Article  Google Scholar 

  6. L. A. G. Aylmore and J. M. Hainsworth, “The use of computed assisted tomography to determine spatial distribution of soil water content,” Aust. J. Soil Res. 21, 435–443 (1983).

    Article  Google Scholar 

  7. A. Bacq-Labreuil, J. Crawford, S. J Mooney, A. L. Neal, E. Akkari, C. McAuliffe, X. Zhang, M. Redmile-Gordon, and K. Ritz, “Effects of cropping systems upon the three-dimensional architecture of soil systems are modulated by texture,” Geoderma 332, 73–83 (2018). https://doi.org/10.1016/j.geoderma.2018.07.002

    Article  Google Scholar 

  8. T. G. Baychev, A. P. Jivkov, A. Rabbani, A. Q. Raeini, Q. Xiong, T. Lowe, and P. J. Withers, “Reliability of algorithms interpreting topological and geometric properties of porous media for pore network modeling,” Transp. Porous Media 128, 271–301 (2019).

    Article  Google Scholar 

  9. A. A. Belik, A. A. Kokoreva, A. G. Bolotov, A. V. Dembovetskii, V. N. Kolupaeva, D. V. Korost, and A. N. Khomyak, “Characterizing macropore structure of agrosoddy-podzolic soil using computed tomography,” Open Agric. 5, 888–897 (2020). https://doi.org/10.1515/opag-2020-0080

    Article  Google Scholar 

  10. C. Bilger, M. Aboukhedr, K. Vogiatzaki, and R. S. Cant, “Evaluation of two-phase flow solvers using Level Set and Volume of Fluid methods,” J. Comput. Phys. 345, 665–686 (2017).

    Article  Google Scholar 

  11. B. Biswal, C. Manwart, and R. Hilfer, “Three-dimensional local porosity analysis of porous media,” Phys. A (Amsterdam) 255, 221–241 (1998).

    Article  Google Scholar 

  12. D. Braz, R. T. Lopes, and L. M. G. Motta, “Dual-energy computerized tomography in compacted soil,” Geotech. Geol. Eng. 18, 221–238 (2000).

    Article  Google Scholar 

  13. Y. Capowiez, A. Pierret, P. Monestiez, and L. Belzunces, “Evolution of burrow systems after the accidental introduction of a new earthworm species into a Swiss pre-alpine meadow,” Biol. Fertil. Soils 31, 494–500 (2000).

    Article  Google Scholar 

  14. Y. Capowiez, S. Sammartino, and E. Michel, “Using X-ray tomography to quantify earthworm bioturbation non-destructively in repacked soil cores,” Geoderma 162, 124–131 (2011).

    Article  Google Scholar 

  15. M. Y. M. Chiang, F. A. Landis, X. Wang, J. R. Smith, M. T. Cicerone, J. Dunkers, and Y. Luo, “Local thickness and anisotropy approaches to characterize pore size distribution of three-dimensional porous networks,” Tissue Eng., Part C 15, 65–76 (2009). https://doi.org/10.1089/ten.tec.2008.0298

    Article  Google Scholar 

  16. A. Cormack, “Representation of a function by its line integrals, with some radiological applications,” J. Appl. Phys. 34 (9), 2722–2727 (1963).

    Article  Google Scholar 

  17. S. Crestana, PhD Thesis (Säo Paulo, 1985).

  18. CTan Usermanual: Morphometric Parameters Measured by Skyscan™ CT-Analyser Software (Bruker, Billerica, MA, 2013).

  19. N. Dal Ferro, L. Sartori, G. Simonetti, A. Berti, and F. Morari, “Soil macro- and microstructure as affected by different tillage systems and their effects on maize root growth,” Soil Tillage Res. 140, 55–65 (2014). https://doi.org/10.1016/j.still.2014.02.003

    Article  Google Scholar 

  20. A. Demianov, O. Dinariev, and N. Evseev, “Density functional modeling in multiphase compositional hydrodynamics,” Can. J. Chem. Eng. 89 (2), 206–226 (2011).

    Article  Google Scholar 

  21. P. Eichheimer, M. Thielmann, A. Popov, G. J. Golabek, W. Fujita, M. O. Kottwitz, and B. J. P. Kaus, “Pore-scale permeability prediction for Newtonian and non-Newtonian fluids,” Solid Earth 10 (5), 1717–1731 (2019).

    Article  Google Scholar 

  22. T. R. Elliot and R. J. Heck, “A comparison of optical and X-ray CT technique for void analysis in soil thin section,” Geoderma 141, 60–70 (2007).

    Article  Google Scholar 

  23. E. T. Elliott and D. C. Coleman, “Let the soil work for us,” Ecol. Bull. 39, 23–32 (1998).

    Google Scholar 

  24. I. Fatt, “The network model of porous media I. Capillary pressure,” Trans. AIME 207, 144–159 (1956).

    Article  Google Scholar 

  25. I. Fatt, “The network model of porous media II. Dynamic properties of a single size tube network,” Trans. AIME 207, 160–163 (1956).

    Google Scholar 

  26. I. Fatt, “The network model of porous media III. Dynamic properties of networks with tube radius distribution,” Trans. AIME 207, 164–181 (1956).

    Google Scholar 

  27. K. M. Gerke and M. V. Karsanina, “Improving stochastic reconstructions by weighing correlation functions in an objective function,” Europhys. Lett. 111 (5), 56002 (2015). https://doi.org/10.1209/0295-5075/111/56002

    Article  Google Scholar 

  28. K. M. Gerke and M. V. Karsanina, “How pore structure non-stationarity compromises flow properties representativity (REV) for soil samples: pore-scale modelling and stationarity analysis,” Eur. J. Soil Sci., (2020). https://doi.org/10.1111/ejss.13055

  29. K. M. Gerke, M. V. Karsanina, and D. Mallants, “Universal stochastic multiscale image fusion: an example application for shale rock,” Sci. Rep. 5, 15880 (2015). https://doi.org/10.1038/srep15880

    Article  Google Scholar 

  30. K. M. Gerke, M. V. Karsanina, and E. V. Skvortsova, “Description and reconstruction of the soil pore space using correlation functions,” Eurasian Soil Sci. 45, 861–872 (2012). https://doi.org/10.1134/S1064229312090049

    Article  Google Scholar 

  31. K. M. Gerke, E. V. Korostilev, K. A. Romanenko, and M. V. Karsanina, “Going submicron in the precise analysis of soil structure: a FIB-SEM imaging study at nanoscale,” Geoderma 383, 114739 (2021). https://doi.org/10.1016/j.geoderma.2020.114739

    Article  Google Scholar 

  32. K. M. Gerke, E. B. Skvortsova, and D. V. Korost, “Tomographic method of studying soil pore space: current perspectives and results for some Russian soils,” Eurasian Soil Sci. 45, 700–709 (2012).

    Article  Google Scholar 

  33. K. M. Gerke, T. O. Sizonenko, M. V. Karsanina, E. V. Lavrukhin, V. V. Abashkin, and D. V. Korost, “Improving watershed-based pore-network extraction method using maximum inscribed ball pore-body positioning,” Adv. Water Res. 140, 103576 (2020).

    Article  Google Scholar 

  34. K. M. Gerke, R. V. Vasilyev, S. Khirevich, D. Collins, M. V. Karsanina, T. O. Sizonenko, D. V. Korost, S. Lamontagne, and D. Mallants, “Finite-difference method Stokes solver (FDMSS) for 3D pore geometries: software development, validation and case studies,” Comput. Geosci. 114, 41–58 (2018). https://doi.org/10.1016/j.cageo.2018.01.005

    Article  Google Scholar 

  35. S. N. Gorbov, O. S. Bezuglova, K. N. Abrosimov, E. B. Skvortsova, S. S. Tagiverdiev, and I. V. Morozov, “Physical properties of soils in Rostov agglomeration,” Eurasian Soil Sci. 49, 898–907 (2016).

    Article  Google Scholar 

  36. J. T. Gostick, Z. A. Khan, T. G. Tranter, M. D.R. Kok, M. Agnaou, M. Sadeghi, and R. Jervis, “PoreSpy: A python toolkit for quantitative analysis of porous media images,” J. Open Source Software 4 (37), 1296 (2019).

    Article  Google Scholar 

  37. J. T. Gostick, “Versatile and efficient pore network extraction method using marker-based watershed segmentation,” Phys. Rev. E 96 (2), (2017).

  38. J. Gostick, M. Aghighi, J. Hinebaugh, T. Tranter, M. A. Hoeh, H. Day, B. Spellacy, M. H. Sharqawy, A. Bazylak, A. Burns, and W. Lehnert, “OpenPNM: a pore network modeling package,” Comput. Sci. Eng. 18 (4), 60–74 (2016).

    Article  Google Scholar 

  39. Z. He, S. Zhang, J. Teng, Y. Yao, and D. Sheng, “A coupled model for liquid water-vapor-heat migration in freezing soils,” Cold Reg. Sci. Technol. 148, 22–28 (2018). https://doi.org/10.1016/j.coldregions.2018.01.003

    Article  Google Scholar 

  40. A. L. Herring, L. Andersson, S. Schlüter, A. Sheppard, and D. Wildenschild, “Efficiently engineering pore-scale processes: the role of force dominance and topology during nonwetting phase trapping in porous media,” Adv. Water Res. 79, 91–102 (2015). https://doi.org/10.1016/j.advwatres.2015.02.005

    Article  Google Scholar 

  41. D. W. Holmes, J. R. Williams, P. Tilke, and C. R. Leonardi, “Characterizing flow in oil reservoir rock using SPH: absolute permeability,” Comput. Part. Mech. 3, 141–154 (2016). https://doi.org/10.1007/s40571-015-0038-7

    Article  Google Scholar 

  42. G. N. Hounsfield, “Computerized transverse axial scanning (tomography). Description to system,” Br. J. Radiol. 46, 1016–1022 (1973).

    Article  Google Scholar 

  43. D. Ivonin, T. Kalnin, E. Grachev, and E. Shein, “Quantitative analysis of pore space structure in dry and wet soil by integral geometry methods,” Geosciences 10 (9), 365–365 (2020).

    Article  Google Scholar 

  44. N. Jarvis, M. Larsboand, and J. Koestel, “Connectivity and percolation of structural pore networks in a cultivated silt loam soil quantified by X-ray tomography,” Geoderma 287, 71–79 (2017). https://doi.org/10.1016/j.geoderma.2016.06.026

    Article  Google Scholar 

  45. Y. Jiao, F. H. Stillinger, and S. Torquato, “Modeling heterogeneous materials via two-point correlation functions: basic principles,” Phys. Rev. 76, 031110 (2007).

    Google Scholar 

  46. M. Joschko, O. Graff, P. C. Müller, K. Kotzke, P. Lindner, D. P. Pretschner, and O. Larink, “A non-destructive method for the morphological assessment of earthworm burrow systems in three dimensions by X-ray computed tomography,” Biol. Fertil. Soils 11, 88–92 (1991).

    Article  Google Scholar 

  47. M. V. Karsanina, K. M. Gerke, E. V. Skvortsova, A. L. Ivanov, and D. Mallants, “Enhancing image resolution of soils by stochastic multiscale image fusion,” Geoderma 314, 138–145 (2018). https://doi.org/10.1016/j.geoderma.2017.10.055

    Article  Google Scholar 

  48. M. V. Karsanina, K. M. Gerke, E. V. Skvortsova, and D. Mallants, “Universal spatial correlation functions for describing and reconstructing soil microstructure,” PLoS One 10 (5), e0126515 (2015).

    Article  Google Scholar 

  49. M. V. Karsanina, E. V. Lavrukhin, D. S. Fomin, A. V. Yudina, K. N. Abrosimov, and K. M. Gerke, “Compressing soil structural information into parameterized correlation functions,” Eur. J. Soil Sci., (2020). https://doi.org/10.1111/ejss.13025

  50. S. Khirevich, I. Ginzburg, and U. Tallarek, “Coarse-and fine-grid numerical behavior of MRT/TRT lattice-Boltzmann schemes in regular and random sphere packings,” J. Comput. Phys. 281, 708–742 (2015).

    Article  Google Scholar 

  51. N. Koebernick, K. R. Daly, S. D. Keyes, T. S. George, L. K. Brown, A. Raffan, L. J. Cooper, M. Naveed, A. G. Bengough, I. Sinclair, P. D. Hallett, and T. Roose, “High-resolution synchrotron imaging shows that root hairs influence rhizosphere soil structure formation,” New Phytol. 216 (1), 124–135 (2017). https://doi.org/10.1111/nph.14705

    Article  Google Scholar 

  52. J. Koestel, “SoilJ: an ImageJ plug-in for the semiautomatic processing of three-dimensional X-ray images of soils,” Vadose Zone J. 17 (1), 170062 (2018).

    Article  Google Scholar 

  53. A. N. Kravchenko, W. C. Negassa, A. K. Guber, and M. L. Rivers, “Protection of soil carbon within macro-aggregates depends on intra-aggregate pore characteristics,” Sci. Rep. 5, 291 (2015). https://doi.org/10.1038/srep16261

    Article  Google Scholar 

  54. E. V. Lavrukhin, K. M. Gerke, K. A. Romanenko, K. N. Abrosimov, and M. V. Karsanina, “Assessing the fidelity of neural network-based segmentation of soil XCT images based on pore-scale modelling of saturated flow properties,” Soil Tillage Res. 209 (15), 104942 (2021). https://doi.org/10.1016/j.still.2021.104942

    Article  Google Scholar 

  55. M. P. Lebedeva, D. L. Golovanov, V. A. Shishkov, A. L. Ivanov, and K. N. Abrosimov, “Microscopic and tomographic studies for interpreting the genesis of desert varnish and the vesicular horizon of desert soils in Mongolia and the USA,” Bol. Soc. Geol. Mex. 71 (1), 21–42 (2019).

    Article  Google Scholar 

  56. M. Leue, D. Uteau-Puschmann, S. Peth, J. Nellesen, R. Kodešová, and H. H. Gerke, “Separation of soil macropore types in three-dimensional x-ray computed tomography images based on pore geometry characteristics,” Vadose Zone J. 18, 1–13 (2019). https://doi.org/10.2136/vzj2018.09.0170

    Article  Google Scholar 

  57. W. B. Lindquist, S.-M. Lee, D. A. Coker, K. W. Jones, and P. Spanne, “Medial axis analysis of void structure in three-dimensional tomographic images of porous media,” J. Geophys. Res.: Solid Earth 101, 8297–8310 (1996).

    Article  Google Scholar 

  58. M. Lucas, S. Schlüter, H.-J. Vogel, and D. Vetterlein, “Soil structure formation along an agricultural chronosequence,” Geoderma 350, 61–72 (2019). https://doi.org/10.1016/j.geoderma.2019.04.041

    Article  Google Scholar 

  59. L. Luo, H. Lin, and S. Li, “Quantification of 3-D soil macropore networks in different soil types and land uses using computed tomography,” J. Hydrol. 39 (1–2), 53–64 (2010).

    Article  Google Scholar 

  60. Z. Ma and S. Torquato, “Precise algorithms to compute surface correlation functions of two-phase heterogeneous media and their applications,” Phys. Rev. E 98 (1), 013307 (2018).

    Article  Google Scholar 

  61. Z. Ma and S. Torquato, “Generation and structural characterization of Debye random media,” Phys. Rev. E 102 (4), 043310 (2020).

    Article  Google Scholar 

  62. X. Miao, K. M. Gerke, and T. O. Sizonenko, “A new way to parameterize hydraulic conductances of pore elements: a step forward to create pore-networks without pore shape simplifications,” Adv. Water Res. 105, 162–172 (2017).

    Article  Google Scholar 

  63. S. J. Mooney, T. P. Pridmore, J. Helliwell, and M. J. Bennett, “Developing X-ray computed tomography to non-invasively image 3D root systems architecture in soil,” Plant Soil 352 (1–2), 1–22 (2012). https://doi.org/10.1007/s11104-011-1039-9

    Article  Google Scholar 

  64. W. C. Negassa, A. K. Guber, A. N. Kravchenko, T. L. Marsh, B. Hildebrandt, and M. L. Rivers, “Properties of soil pore space regulate pathways of plant residue decomposition and community structure of associated bacteria,” PLoS One 10, e0123999 (2015). https://doi.org/10.1371/journal.pone.0123999

    Article  Google Scholar 

  65. A. Odgaard and H. J. Gundersen, “Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions,” Bone 14 (2), 173–182 (1993).

    Article  Google Scholar 

  66. W. Oh and B. Lindquist, “Image thresholding by indicator kriging,” IEEE Trans. Pattern Anal. Mach. Intell. 21, 590–602 (1999).

    Article  Google Scholar 

  67. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979). https://doi.org/101109/TSMC19794310076

    Article  Google Scholar 

  68. M. Pagliai and N. Vignozzi, “Soil pore system as an indicator of soil quality,” Adv. GeoEcol. 35, 71–82 (2002).

    Google Scholar 

  69. A. M. Petrovic, J. E. Siebert, and P. E. Rieke, “Soil bulk density analysis in three dimensions by computed tomographic scanning,” Soil Sci. Soc. Am. J. 46 (3), 445–450 (1982). https://doi.org/10.2136/sssaj1982.03615995004600030001x

    Article  Google Scholar 

  70. R. L. Peyton, B. A. Haeffner, S. H. Anderson, and C. J. Gantzer, “Applying X-ray CT to measure macropore diameters in undisturbed soil cores,” Geoderma 53 (3–4), 329–340 (1992).

    Article  Google Scholar 

  71. L. F. Pires, J. A.R. Borges, J. A. Rosa, M. Cooper, R. J. Heck, S. Passoni, and W. L. Roque, “Soil structure changes induced by tillage systems,” Soil Tillage Res. 165, 66–79 (2017). https://doi.org/10.1016/j.still.2016.07.010

    Article  Google Scholar 

  72. L. F. Pires, W. L. Roque, J. A. Rosa, and S. J. Mooney, “3D analysis of the soil porous architecture under long term contrasting management systems by X-ray computed tomography,” Soil Tillage Res. 191, 197–206 (2019). https://doi.org/10.1016/j.still.2019.02.018

    Article  Google Scholar 

  73. L. Pogosyan, K. Abrosimov, K. Romanenko, J. Marquez, and S. Sedov, “How is the fragipan incorporated in the pore space architecture of a boreal retisol?” Soil Res. 57 (6), 566–574 (2019). https://doi.org/10.1071/SR18239

    Article  Google Scholar 

  74. L. Pogosyan, A. Gastelum, B. Prado, J. Marquez, K. Abrosimov, K. Romanenko, and S. Sedov, “Morphogenesis and quantification of the pore space in a tephra-palaeosol sequence in Tlaxcala, central Mexico,” Soil Res. 57 (6), 559–565 (2019). https://doi.org/10.1071/SR18185

    Article  Google Scholar 

  75. V. Pot, X. Zhong, and P. C. Baveye, “Effect of resolution, reconstruction settings, and segmentation methods on the numerical calculation of saturated soil hydraulic conductivity from 3D computed tomography images,” Geoderma 362, 114089 (2020).

    Article  Google Scholar 

  76. M. Prodanović and S. L. Bryant, “A level set method for determining critical curvatures for drainage and imbibition,” J. Colloid Interface Sci. 304 (2), 442–458 (2006).

    Article  Google Scholar 

  77. E. Rabot, M. Wiesmeier, S. Schlüter, and H.-J. Vogel, “Soil structure as an indicator of soil functions: a review,” Geoderma 314, 122–137 (2018).

    Article  Google Scholar 

  78. A. Q. Raeini, B. Bijeljic, and M. J. Blunt, “Generalized network modeling: Network extraction as a coarse-scale discretization of the void space of porous media,” Phys. Rev. E 96 (1), 013312 (2017).

    Article  Google Scholar 

  79. A. Q. Raeini, M. J. Blunt, and B. Bijeljic, “Modeling two-phase flow in porous media at the pore scale using the volume-of-fluid method,” J. Comput. Phys. 231, 5653–5668 (2012).

    Article  Google Scholar 

  80. P. Renard and D. Allard, “Connectivity metrics for subsurface flow and transport,” Adv. Water Res. 51, 168–196 (2013). https://doi.org/10.1016/j.advwatres.2011.12.001

    Article  Google Scholar 

  81. M. R. Rokhforouz and H. A. Akhlaghi Amiri, “Phase-field simulation of counter-current spontaneous imbibition in a fractured heterogeneous porous medium,” Phys. Fluids 29 (6), 062104 (2017).

    Article  Google Scholar 

  82. K. A. Romanenko, E. B. Skvortsova, and V. A. Rozhkov, “Form and orientation of soil pores as indicators of a structural soil organization,” IOP Conf. Ser.: Earth Environ. Sci. 368, 012041 (2019). https://doi.org/10.1088/1755-1315/368/1/012041

  83. K. A. Romanenko, V. V. Rogov, A. V. Yudina, K. N. Abrosimov, E. B. Skvortsova, and A. N. Kurchatova, “Frozen soils and sediments microstructure x-ray tomography study: methods, approaches, perspectives,” Dokuchaev Soil Bull. 83, 103–117 (2016). https://doi.org/10.19047/0136-1694-2016-83-103-117

    Article  Google Scholar 

  84. T. Romanis, S. Sedov, S. Lev, M. Lebedeva, K. Kondratev, A. Yudina, K. Abrosimov, A. Golyeva, and D. Volkov, “Landscape change and occupation history in the Central Russian Upland from Upper Palaeolithic to medieval: paleopedological record from Zaraysk Kremlin,” Catena 196, 104873 (2021). https://doi.org/10.1016/j.catena.2020.104873

    Article  Google Scholar 

  85. V. A. Rozhkov, Soil Informatics (Agropromizdat, Moscow, 1989) [in Russian].

    Google Scholar 

  86. V. Shabro, C. Torres-Verdín, F. Javadpour, and K. Sepehrnoori, “Finite-difference approximation for fluid-flow simulation and calculation of permeability in porous media,” Transp. Porous Media 94, 775–793 (2012). https://doi.org/10.1007/s11242-012-0024-y

    Article  Google Scholar 

  87. F. San José Martínez, F. J. Muñoz Ortega, F. J. Caniego Monreal, A. N. Kravchenko, and W. Wang, “Soil aggregate geometry: measurements and morphology,” Geoderma 237–238, 36–48 (2015). https://doi.org/10.1016/j.geoderma.2014.08.003

    Article  Google Scholar 

  88. A. Y. Sasov, “The investigation of the microstructure of soils by computed tomography,” Vestn. Mosk. Univ., Ser. Geol. 3, 56–62 (1987).

    Google Scholar 

  89. S. Schlüter, C. Großmann, J. Diel, G.-M. Wu, S. Tischer, A. Deubel, and J. Rücknagel, “Long-term effects of conventional and reduced tillage on soil structure, soil ecological and soil hydraulic properties,” Geoderma 332, 10–19 (2018). https://doi.org/10.1016/j.geoderma.2018.07.001

    Article  Google Scholar 

  90. S. Schlüter, U. Weller, and H.-J. Vogel, “Segmentation of X-ray microtomography images of soil using gradient masks,” Comput. Geosci. 36 (10), 1246–1251 (2010).

    Article  Google Scholar 

  91. S. Schlüter, U. Weller, and H.-J. Vogel, “Soil-structure development including seasonal dynamics in a long-term fertilization experiment,” J. Plant Nutr. Soil Sci. 174, 395–403 (2011). https://doi.org/10.1002/jpln.201000103

    Article  Google Scholar 

  92. E. V. Shein, E. B. Skvortsova, A. V. Dembovetskii, K. N. Abrosimov, L. I. Il’in, and N. A. Shnyrev, “Pore-size distribution in loamy soils: a comparison between microtomographic and capillarimetric determination methods,” Eurasian Soil Sci. 49, 315–325 (2016). https://doi.org/10.1134/S1064229316030091

    Article  Google Scholar 

  93. E. B. Skvortsova, E. V. Shein, K. N. Abrosimov, K. M. Gerke, D. V. Korost, K. A. Romanenko, V. S. Belokhin, and A. V. Dembovetskii, “Tomography in soil science,” Dokuchaev Soil Bull. 86, 28–34 (2016). https://doi.org/10.19047/0136-1694-2016-86-28-34

    Article  Google Scholar 

  94. A. S. Sorokin, K. N. Abrosimov, M. P. Lebedeva, and G. S. Kust, “Composition and structure of aggregates from compacted soil horizons in the southern steppe zone of European Russia,” Eurasian Soil Sci. 49, 326–337 (2016). https://doi.org/10.1134/S1064229316030108

    Article  Google Scholar 

  95. A. V. Suzdaleva, E. V. Shein, N. V. Verkhovtseva, and K. N. Abrosimov, “Physical and microbiological aspects of the soil seedbed in the early formation of the barley root system (Hordeum vulgare L.): tomographic studies,” IOP Conf. Ser.: Mater. Sci. Eng. 941, 012032 (2020). https://doi.org/10.1088/1757-899X/941/1/012032

  96. C. O. Tan, D. Kuppens, and R. Gupta, “Dual-energy CT,” in Neuroimaging Techniques in Clinical Practice: Physical Concepts and Clinical Applications (Springer-Verlag, Cham, 2020). https://doi.org/10.1007/978-3-030-48419-4_7

  97. E. W. Tollner and C. Murphy, “Factors affecting soil x-ray absorption coefficients with computer tomography,” Am. Soc. Agric. Eng. 34 (3), 1047–1053 (1991).

    Article  Google Scholar 

  98. S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer-Verlag, New York, 2002).

    Book  Google Scholar 

  99. J. K. Torrance, T. Elliot, R. Martin, and R. J. Heck, “X-ray computed tomography of frozen soil,” Cold Reg. Sci. Technol. 53, 75–82 (2008).

    Article  Google Scholar 

  100. R. A. Victor, M. Prodanović, and C. Torres-Verdín, “Monte Carlo approach for estimating density and atomic number from dual-energy computed tomography images of carbonate rocks,” J. Geophys. Res.: Solid Earth 122 (12), 9804–9824 (2017).

    Article  Google Scholar 

  101. H.-J. Vogel, “Morphological determination of pore connectivity as a function of pore size using serial sections,” Eur. J. Soil Sci. 48, 365–377 (1997). https://doi.org/10.1111/j.1365-2389.1997.tb00203.x

    Article  Google Scholar 

  102. H.-J. Vogel, “Topological characterization of porous media,” in Morphology of Condensed Matter: Physics and Geometry of Spatially Complex Systems (Springer-Verlag, Berlin, 2002), pp. 75–92.

    Google Scholar 

  103. H.-J. Vogel, U. Weller, and S. Schlüter, “Quantification of soil structure based on Minkowski functions,” Comput. Geosci. 36, 1236–1245 (2010). https://doi.org/10.1016/j.cageo.2010.03.007

    Article  Google Scholar 

  104. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2014).

    Google Scholar 

  105. Y. S. Yang, K. Y. Liu, S. Mayo, A. Tulloh, M. B. Clennell, and T. Q. Xiao, “A data-constrained modeling approach to sandstone microstructure characterization,” J. Petrol. Sci. Eng. 105, 76–83 (2013).

    Article  Google Scholar 

  106. A. V. Yudina and K. A. Romanenko, “Mechanistic understanding of soil hierarchical structure,” in Proceedings of the EGU General Assembly (Vienna, 2019). https://doi.org/10.13140/RG.2.2.26167.16809

  107. Z. Zhang, K. Liu, H. Zhou, H. Lin, D. Li, and X. Peng, “Three-dimensional characteristics of biopores and non-biopores in the subsoil respond differently to land use and fertilization,” Plant Soil 428, 453–467 (2018). https://doi.org/10.1007/s11104-018-3689-3

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 19-74-10070; the equipment of the Center for Collective Use “Functions and Properties of Soils and Soil Cover” at the V.V. Dokuchaev Soil Science Institute (registration number 441994, https://ckp-rf.ru/ckp/441994/) was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Abrosimov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Konyushkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrosimov, K.N., Gerke, K.M., Fomin, D.S. et al. Tomography in Soil Science: From the First Experiments to Modern Methods (A Review). Eurasian Soil Sc. 54, 1385–1399 (2021). https://doi.org/10.1134/S1064229321090027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321090027

Keywords:

Navigation