Skip to main content
Log in

Finite-Difference Approximation for Fluid-Flow Simulation and Calculation of Permeability in Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We introduce a finite-difference method to simulate pore scale steady-state creeping fluid flow in porous media. First, a geometrical approximation is invoked to describe the interstitial space of grid-based images of porous media. Subsequently, a generalized Laplace equation is derived and solved to calculate fluid pressure and velocity distributions in the interstitial space domain. We use a previously validated lattice-Boltzmann method (LBM) as ground truth for modeling comparison purposes. Our method requires on average 17 % of the CPU time used by LBM to calculate permeability in the same pore-scale distributions. After grid refinement, calculations of permeability performed from velocity distributions converge with both methods, and our modeling results differ within 6 % from those yielded by LBM. However, without grid refinement, permeability calculations differ within 20 % from those yielded by LBM for the case of high-porosity rocks and by as much as 100 % in low-porosity and highly tortuous porous media. We confirm that grid refinement is essential to secure reliable results when modeling fluid flow in porous media. Without grid refinement, permeability results obtained with our modeling method are closer to converged results than those yielded by LBM in low-porosity and highly tortuous media. However, the accuracy of the presented model decreases in pores with elongated cross sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

3D:

Three-dimensional

FDGPA:

Finite-difference geometrical pore approximation

LBM:

Lattice-Boltzmann method

NS:

Navier–Stokes

\({\vec{\vec{A}}}\) :

A septa-diagonal matrix, representing the relevant \({\vec{w}}\) for all grids, s

\({\vec{B}}\) :

Boundary condition representing the inlet and outlet pressures, Pa s

d :

Digital equivalent of r, dimensionless

d max :

Digital equivalent of r max, dimensionless

f c(d max):

Calibration function, dimensionless

J, J z :

Mass flux, kg m−2 s−1

J tot :

Total mass flux, kg m−2 s−1

K :

Permeability, m2[1 D = 1 Darcy = 9.869 × 10−13 m2]

L :

Porous media (tube) length, m

\({P, P_{1}, P_{2}, \vec{P}}\) :

Pressure, Pa

P avg :

Average pressure, Pa

R :

Tube radius, m

r :

Radial distance from the inner wall, m

r max :

The largest inscribed radius, m

S(d max):

Area of the smallest possible cross-section for a given d max, dimensionless

V :

Volume flux, m s−1

\({\vec{w}}\) :

Weighting factor in the generalized Laplace equation, s

μ :

Viscosity, Pa s

ν :

Local fluid velocity, m s−1

ρ :

Fluid density, kg m−3

ρ avg :

Average fluid density, kg m−3

τ :

Relaxation parameter, dimensionless

τ rz :

Z-momentum across a surface perpendicular to the radial direction, kg m s−1

References

  • Arns C.H., Knackstedt M.A., Pinczewski W.V., Martys N.S.: Virtual permeametry on microtomographic images. J. Petrol. Sci. Eng. 45, 41–46 (2004)

    Article  Google Scholar 

  • Banavar J.R., Johnson D.L.: Characteristic pore sizes and transport in porous media. Phys. Rev. B 35, 7283–7286 (1987)

    Article  Google Scholar 

  • Bear J.: Dynamics of Fluids in Porous Media. Dover, Mineola (1988)

    Google Scholar 

  • Bird R.B., Stewart W.E., Lightfoot E.N.: Transport Phenomena. Wiley, New York (2002)

    Google Scholar 

  • Bryant S.L., King P.R., Mellor D.W.: Network model evaluation of permeability and spatial correlation in a real random sphere packing. Transp. Porous Med. 11, 53–70 (1993)

    Article  Google Scholar 

  • Constantinides G.N., Payatakes A.C.: A three dimensional network model for consolidated porous media. Basic studies. Chem. Eng. Commun. 81, 55–81 (1989)

    Article  Google Scholar 

  • Datta-Gupta A., King M.J.: Streamline Simulation: Theory and Practice. Society of Petroleum Engineers, Richardson (2007)

    Google Scholar 

  • Flannery B.P., Deckman H.W., Roberge W.G., D’amico K.L.: Three-dimensional X-ray microtomography. Science 237, 1439 (1987)

    Article  Google Scholar 

  • Guo Z., Zhao T.S.: Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66, 36304 (2002)

    Article  Google Scholar 

  • Javadpour F.: CO2 injection in geological formations: determining macroscale coefficients from pore scale processes. Transp. Porous Med. 79, 87–105 (2009)

    Article  Google Scholar 

  • Javadpour F.: Nanopores and apparent permeability of gas flow in mudrocks (Shales and Siltstone). J. Can. Petrol. Technol. 48, 16–21 (2009)

    Google Scholar 

  • Javadpour F., Jeje A.: Modeling filtration of platelet-rich plasma in fibrous filters. Transp. Porous Med. 91, 677–696 (2012)

    Article  Google Scholar 

  • Javadpour F., Pooladi-Darvish M.: Network modelling of apparent-relative permeability of gas in heavy oils. J. Can. Petrol. Technol. 43, 23–30 (2004)

    Google Scholar 

  • Javadpour F., Fisher D., Unsworth M.: Nanoscale gas flow in shale gas sediments. J. Can. Petrol. Technol. 46, 55–61 (2007)

    Google Scholar 

  • Javadpour, F., Shabro, V., Jeje, A., Torres-Verdín, C.: Modeling of coupled surface and drag forces for the transport and capture. In: Multiphysics Conference 2009, Lille (2009)

  • Javadpour, F., Moravvej, M., Amrein, M.: Atomic force microscopy (AFM): a new tool for gas-shale characterization. J. Can. Petrol. Technol. (2012). doi:10.2118/161015-PA

  • Jin, G., Patzek, T.W., Silin, D.B.: Physics-based reconstruction of sedimentary rocks. Soc. Petrol. Eng. 83587-MS (2003)

  • Jin, G., Patzek, T.W., Dmitry, B., Silin, D.B.: Direct prediction of the absolute permeability of unconsolidated and consolidated reservoir rock. Soc. Petrol. Eng. 90084-MS (2004)

  • Jin, G., Torres-Verdín, C., Radaelli, F., Rossi, E.: Experimental validation of pore-level calculations of static and dynamic petrophysical properties of clastic rocks. Soc. Petrol. Eng. 109547-MS (2007)

  • Landau L.D., Lifchitz E.M.: Fluid Mechanics. Pergamon Press, Oxford (1987)

    Google Scholar 

  • Larson B.C., Yang W., Ice G.E., Budai J.D., Tischler J.Z.: Three-dimensional X-ray structural microscopy with submicrometre resolution. Nature 415, 887–890 (2002)

    Article  Google Scholar 

  • Pan C., Hilpert M., Miller C.T.: Pore-scale modeling of saturated permeabilities in random sphere packings. Phys. Rev. E 64, 66702 (2001)

    Article  Google Scholar 

  • Raoof A., Hassanizadeh S.M.: A new method for generating pore-network models of porous media. Transp. Porous Med. 81, 391–407 (2010)

    Article  Google Scholar 

  • Rocha R.P., Cruz M.E.: Calculation of the permeability and apparent permeability of three-dimensional porous media. Transp. Porous Med. 83, 349–373 (2010)

    Article  Google Scholar 

  • Rothman D.H.: Cellular-automaton fluids: a model for flow in porous media. Geophysics 53, 509 (1988)

    Article  Google Scholar 

  • Roy S., Raju R., Chuang H.F., Cruden B.A., Meyyappan M.: Modeling gas flow through microchannels and nanopores. J. Appl. Phys. 93, 4870 (2003)

    Article  Google Scholar 

  • Scheidegger A.E.: The physics of flow through porous media. Soil Sci. 86, 355 (1958)

    Article  Google Scholar 

  • Shabro V., Javadpour F., Torres-Verdín C.: A generalized finite-difference diffusive-advective (FDDA) model for gas flow in micro- and nano-porous media. World J. Eng. 6, 7–15 (2009)

    Google Scholar 

  • Shabro, V., Prodanovic, M., Arns, C.H., Bryant, S.L., Torres-Verdín, C., Knackstedt, M.A.: Pore-scale modeling of two-phase flow. In: XVIII International Conference on Computational Methods in Water Resources, Barcelona (2010)

  • Shewchuk J.R.: An Introduction to the Conjugate Gradient Method Without the Agonizing Pain. Carnegie Mellon University, Pittsburg (1994)

    Google Scholar 

  • Silin, D.B., Jin, G., Patzek, T.: Robust determination of the pore space morphology in sedimentary rocks. Soc. Petrol. Eng. 84296-MS (2003)

  • Sisavath S., Jing X.D., Zimmerman R.W.: Laminar flow through irregularly-shaped pores in sedimentary rocks. Transp. Porous Med. 45, 41–62 (2001a)

    Article  Google Scholar 

  • Sisavath S., Jing X.D., Zimmerman R.W.: Creeping flow through a pipe of varying radius. Phys. Fluids 13, 2762–2772 (2001b)

    Article  Google Scholar 

  • Thürey N., Pohl T., Rüde U., Oechsner M., Körner C.: Optimization and stabilization of LBM free surface flow simulations using adaptive parameterization. Comput. Fluids 35, 934–939 (2006)

    Article  Google Scholar 

  • Toumelin E., Torres-Verdín C., Sun B., Dunn K.J.: Random-walk technique for simulating NMR measurements and 2D NMR maps of porous media with relaxing and permeable boundaries. J. Magn. Reson. 188, 83–96 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Shabro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shabro, V., Torres-Verdín, C., Javadpour, F. et al. Finite-Difference Approximation for Fluid-Flow Simulation and Calculation of Permeability in Porous Media. Transp Porous Med 94, 775–793 (2012). https://doi.org/10.1007/s11242-012-0024-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-012-0024-y

Keywords

Navigation