Skip to main content
Log in

Monoammonium Phosphate Effects on Glyphosate in Soils: Mobilization, Phytotoxicity, and Alteration of the Microbial Community

  • AGRICULTURAL CHEMISTRY AND SOIL FERTILITY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Application of monoammonium phosphate has been demonstrated to re-immobilize glyphosate sorbed by soil under model laboratory experiment conditions. This effect was most pronounced in the gray forest soil (Haplic Phaeozem), where the concentration of herbicide in the presence of fertilizer was 3.6 times higher than in its absence. For soddy-podzolic soil (Albic Retisol) and leached Chernozem (Luvic Chernozem), this ratio was 1.5 and 2.8, respectively. Thus, the introduction of monoammonium phosphate into soils contaminated with glyphosate may result in an increase of the risk of herbicide migration into the neighboring environments. The estimated number of functional genes of bacteria responsible for glyphosate degradation by means of the C–P bond cleavage did not show statistically significant effect of the fertilizer on the number of copies of the phnJ gene, encoding the C–P lyase of α- and γ-proteobacteria. The release of glyphosate was not accompanied by any adverse effects on the length and biomass of wheat plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. G. P. Gamzikov, “Forecast of nitrogen abundance in soils and demand of field crops n nitrogen fertilizers,” Innovatsii Prod. Bezop., No. 3, 11–20 (2015).

  2. GOST (State Standard) 26204-91: Soils. Determination of Mobile Compounds of Phosphorus and Potassium by Chirikov’s Method Modified by TsINAO (Izd. Standartov, Moscow, 1992) [in Russian].

  3. GOST (State Standard) 26207-91: Soils. Determination of Mobile Compounds of Phosphorus and Potassium by Kirsanov’s Method Modified by TsINAO (Izd. Standartov, Moscow, 1992) [in Russian].

  4. A. D. Zhelezova, A. K. Tkhakakhova, N. V. Yaroslavtseva, S. A. Garbuz, V. I. Lazarev, B. M. Kogut, O. V. Kutovaya, and V. A. Kholodov, “Microbiological parameters of aggregates in typical chernozems of long-term field experiments,” Eurasian Soil Sci. 50, 701–707 (2017).https://doi.org/10.1134/S1064229317060126

    Article  Google Scholar 

  5. A. D. Zhelezova, N. A. Manucharova, and M. V. Gorlenko, “Structural and functional characteristics of the prokaryotic community of soddy-podzolic soil influenced by the herbicide glyphosate,” Moscow Univ. Soil Sci. Bull. 73, 89–94 (2018).

    Article  Google Scholar 

  6. Classification and Diagnostics of Soils of the Soviet Union (Kolos, Moscow, 1977) [in Russian].

  7. N. A. Kulikova and G. F. Lebedeva, Herbicides and Ecological Aspects in Their Application (Librokom, Moscow, 2015) [in Russian].

    Google Scholar 

  8. Practical Manual on Agrochemistry, Ed. by V. G. Mineev (Moscow State Univ., Moscow, 2001) [in Russian].

    Google Scholar 

  9. A. V. Sviridov, T. V. Shushkova, I. T. Ermakova, E. V. Ivanova, D. O. Epiktetov, and A. A. Leontievsky, “Microbial degradation of glyphosate herbicides (review),” Appl. Biochem. Microbiol. 51, 188–195 (2015).

    Article  Google Scholar 

  10. Theory and Practice of the Chemical Analysis of Soils, Ed. by L. A. Vorob’eva (GEOS, Moscow, 2006) [in Russian].

    Google Scholar 

  11. M. Allegrini, E. del V. Gomez, and M. C. Zabaloy, “Repeated glyphosate exposure induces shifts in nitrifying communities and metabolism of phenylpropanoids,” Soil Biol. Biochem. 105, 206–215 (2017). https://doi.org/10.1016/j.soilbio.2016.11.024

    Article  Google Scholar 

  12. V. C. Aparicio, E. De Geronimo, D. Marino, J. Primost, P. Carriquiriborde, and J. L. Costa, “Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins,” Chemosphere 93, 1866–1873 (2013). https://doi.org/10.1016/j.chemosphere.2013.06.041

    Article  Google Scholar 

  13. A. S. F. Araujo, R. T. R. Monteiro, and R. B. Abarkeli, “Effect of glyphosate on the microbial activity of two Brazilian soils,” Chemosphere 52, 799–804 (2003). https://doi.org/10.1016/S0045-6535(03)00266-2

    Article  Google Scholar 

  14. M. L. Banks, A. C. Kennedy, R. J. Kremer, and F. Eivazi, “Soil microbial community response to surfactants and herbicides in two soils,” Appl. Soil Ecol. 74, 12–20 (2014). https://doi.org/10.1016/j.apsoil.2013.08.018

    Article  Google Scholar 

  15. Ch. M. Benbrook, “Trends in glyphosate herbicide use in the United States and globally,” Environ. Sci. Eur. 28 (3), (2016). https://doi.org/10.1186/s12302-016-0070-0

  16. O. K. Borggaard and L. Gimsing, “Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review,” Pest Manage. Sci. 64, 441–456 (2008). https://doi.org/10.1002/ps.1512

    Article  Google Scholar 

  17. S. Bott, T. Tesfamariam, A. Kania, B. Eman, N. Aslan, V. Römheld, and G. Neumann, “Phytotoxicity of glyphosate soil residues re-mobilised by phosphate fertilization,” Plant Soil 342, 249–263 (2011). https://doi.org/10.1007/s11104-010-0689-3

    Article  Google Scholar 

  18. X. Chen, N. Jiang, Z. Chen, J. Tian, N. Sun, M. Xu, and L. Chen, “Response of soil phoD phosphatase gene to long-term combined applications of chemical fertilizers and organic materials,” App. Soil Ecol. 119, 197–204 (2017). https://doi.org/10.1016/j.apsoil.2017.06.019

    Article  Google Scholar 

  19. A. E. Cherni, D. Trabelsi, S. Chebil, F. Barhoumi, I. D. Rodríguez-Llorente, and K. Zribi, “Effect of glyphosate on enzymatic activities, Rhizobiaceae and total bacterial communities in an agricultural Tunisian soil,” Water, Air Soil Pollut. 226, 145 (2015). https://doi.org/10.1007/s11270-014-2263-8

    Article  Google Scholar 

  20. V. Damin, H. C. J. Franco, M. F. Moraes, A. Franco, and P. C. O. Trivelin, “Nitrogen loss in Brachiaria decumbens after application of glyphosate or glufosinate-ammonium,” Sci. Agricola 65, 402–407 (2008).

    Article  Google Scholar 

  21. H. de Jonge, L. W. de Jonge, O. H. Jacobsen, T. Yamaguchi, and P. Moldrup, “Glyphosate sorption in soils of different pH and phosphorus content,” Soil Sci. 166, 230–238 (2001).

    Article  Google Scholar 

  22. R. E. Dick and J. P. Quinn, “Glyphosate-degrading isolates from environmental samples: occurrence and pathways of degradation,” Appl. Microbiol. Biotechnol. 43, 545–550 (1995). https://doi.org/10.1007/BF00218464

    Article  Google Scholar 

  23. C. Druart, O. Delhomme, A. de Vaufleury, E. Ntcho, and M. Millet, “Optimization of extraction procedure and chromatographic separation of glyphosate, glufosinate and aminomethylphosphonic acid in soil,” Anal. Bioanal. Chem. 399, 1725–1732 (2011). https://doi.org/10.1007/s00216-010-4468-z

    Article  Google Scholar 

  24. T. Erban, V. Stehlik, B. Sopko, M. Markovic, M. Seifrtova, T. Halesova, and P. Kovaricek, “The different behaviors of glyphosate and AMPA in compost-amended soil,” Chemosphere 207, 78–83 (2018). https://doi.org/10.1016/j.chemosphere.2018.05.004

    Article  Google Scholar 

  25. I. T. Ermakova, T. Shushkova, A. A. Leontievsky, N. I. Kiseleva, M. Zharikov, and G. A. Zharikov, “Bioremediation of glyphosate-contaminated soils,” Appl. Microbiol. Biotechnol. 88 (2), 585–594 (2010). https://doi.org/10.1007/s00253-010-2775-0

    Article  Google Scholar 

  26. I. T. Ermakova, T. V. Shushkova, A. V. Sviridov, N. F. Zelenkova, N. G. Vinokurova, B. P. Baskunov, and A. A. Leontievsky, “Organophosphonates utilization by soil strains of Ochrobactrum anthropi and Achromobacter sp.,” Arch. Microbiol. 199, 665–675 (2017). https://doi.org/10.1007/s00203-017-1343-8

    Article  Google Scholar 

  27. J. Fan, G. Yang, H. Zhao, G. Shi, Y. Geng, T. Hou, and K. Yao, “Isolation, identification and characterization of a glyphosate-degrading bacterium, Bacillus cereus CB4, from soil,” J. Gen. Appl. Microbiol. 58, 263–271 (2012). https://doi.org/10.2323/jgam.58.263

    Article  Google Scholar 

  28. N. Fierer, J. A. Jackson, R. Vilgalys, and R. B. Jackson, “Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays,” Appl. Environ. Microbiol. 71, 4117–4120 (2005). https://doi.org/10.1128/AEM.71.7.4117

    Article  Google Scholar 

  29. T. D. Fraser, D. H. Lynch, J. Gaiero, K. Khosla, and K. E. Dunfield, “Quantification of bacterial non-specific acid (phoC) and alkaline (phoD) phosphatase genes in bulk and rhizosphere soil from organically managed soybean fields,” Appl. Soil Ecol. 111, 48–56 (2017). https://doi.org/10.1016/j.apsoil.2016.11.013

    Article  Google Scholar 

  30. A. L. Gimsing and O. K. Borggaard, “Effect of phosphate on the adsorption of glyphosate on soils, clay minerals and oxides,” Int. J. Environ. Anal. Chem. 82, 545–552 (2002).

    Article  Google Scholar 

  31. A. L. Gimsing, O. K. Borggaard, and M. Bang, “Influence of soil composition on adsorption of glyphosate and phosphate by contrasting Danish surface soils,” Eur. J. Soil Sci. 55, 183–191 (2004). https://doi.org/10.1046/j.1365-2389.2003.00585.x

    Article  Google Scholar 

  32. A. L. Gimsing, C. Szilas, and O. K. Borggaard, “Sorption of glyphosate and phosphate by variable-charge tropical soils from Tanzania,” Geoderma 138, 127–132 (2007). https://doi.org/10.1016/j.geoderma.2006.11.001

    Article  Google Scholar 

  33. Glyphosate Issue Paper: Evaluation of Carcinogenic Potential (US Environmental Protection Agency, Washington, 2016).

  34. M. P. Gomes, S. Maccario, M. Lucotte, M. Labrecque, and Ph. Juneau, “Consequences of phosphate application on glyphosate uptake by roots: impacts for environmental management practices,” Sci. Total Environ. 537, 115–119 (2015). https://doi.org/10.1016/j.scitotenv.2015.07.054

    Article  Google Scholar 

  35. ISO 10694:1995: Soil Quality—Determination of Organic and Total Carbon after Dry Combustion (Elementary Analysis) (International Organization for Standardization, Geneva, 1995).

  36. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2014).

  37. R. G. Kanissery, A. Welsh, and G. K. Sims, “Effect of soil aeration and phosphate addition on the microbial bioavailability of carbon-14-glyphosate,” J. Environ. Qual. 44, 137–144 (2015). https://doi.org/10.2134/jeq2014.08.0331

    Article  Google Scholar 

  38. Y. V. Kryuchkova, G. L. Burygin, N. E. Gogoleva, Y. V. Gogolev, M. P. Chernyshova, O. E. Makarov, E. E. Fedorov, and O. V. Turkovskaya, “Isolation and characterization of a glyphosate-degrading rhizosphere strain, Enterobacter cloacae K7,” Microbiol. Res. 169, 99–105 (2014). https://doi.org/10.1016/j.micres.2013.03.002

    Article  Google Scholar 

  39. D. la Cecilia and F. Maggi, “Analysis of glyphosate degradation in a soil microcosm,” Environ. Pollut. 233, 201–207 (2018). https://doi.org/10.1016/j.envpol.2017.10.017

    Article  Google Scholar 

  40. S. H. Lancaster, E. B. Hollister, S. A. Senseman, and T. J. Gentry, “Effects of repeated glyphosate applications on soil microbial community composition and the mineralization of glyphosate,” Pest Manage. Sci. 66, 59–64 (2010). https://doi.org/10.1002/ps.1831

    Article  Google Scholar 

  41. S. Munira, A. Farenhorst, D. Flaten, and C. Grant, “Phosphate fertilizer impacts on glyphosate sorption by soil,” Chemosphere 153, 471–477 (2016). https://doi.org/10.1016/j.chemosphere.2016.03.028

    Article  Google Scholar 

  42. D. B. Nguyen, M. T. Rose, T. J. Rose, S. G. Morris, and L. van Zwieten, “Impact of glyphosate on soil microbial biomass and respiration: a meta-analysis,” Soil Biol. Biochem. 92, 50–57 (2016). https://doi.org/10.1016/j.soilbio.2015.09.014

    Article  Google Scholar 

  43. M. M. Newman, N. Hoilett, N. Lorenz, R. P. Dick, M. R. Liles, C. Ramsier, and J. W. Kloepper, “Glyphosate effects on soil rhizosphere-associated bacterial communities,” Sci. Total Environ. 543, 155–160 (2016). https://doi.org/10.1016/j.scitotenv.2015.11.008

    Article  Google Scholar 

  44. E. Okada, J. L. Costa, and F. Bedmar, “Glyphosate dissipation in different soils under no-till and conventional tillage,” Pedosphere, (2017). https://doi.org/10.1016/S1002-0160(17)60430-2

  45. I. A. Ololade, N. A. Oladoja, F. F. Oloye, F. Alomaja, D. D. Akerele, J. Iwaye, and P. Aikpokpodion, “Sorption of glyphosate on soil components: the roles of metal oxides and organic materials,” Soil Sediment Contam. 23, 571–585 (2014). https://doi.org/10.1080/15320383.2014846900

    Article  Google Scholar 

  46. R. Pipke and N. Amrhein, “Carbon-phosphorus lyase activity in permeabilized cells of Arthrobacter sp. GLP-1,” FEBS Lett. 236, 135–138 (1988). https://doi.org/10.1016/0014-5793(88)80301-6

    Article  Google Scholar 

  47. J. R. Powell, D. J. Levy-Booth, R. H. Gulden, W. L. Asbil, R. G. Campbell, K. E. Dunfield, A. S. Hamill, M. M. Hart, S. Lerat, R. E. Nurse, K. P. Pauls, P. H. Sikkema, C. J. Swanton, J. T. Trevors, and J. N. Klironomos, “Effects of genetically modified, herbicide-tolerant crops and their management on soil food web properties and crop litter decomposition,” J. Appl. Ecol. 46, 388–396 (2009). https://doi.org/10.1111/j.1365-2664.2009.01617.x

    Article  Google Scholar 

  48. S. A. Ragot, M. A. Kertesz, and E. K. Bünemann, “phoD alkaline phosphatase gene diversity in soil,” Appl. Environ. Microbiol. 81, 7281–7289 (2015). https://doi.org/10.1128/aem.01823-15

    Article  Google Scholar 

  49. A. Santos and M. Flores, “Effects of glyphosate on nitrogen fixation of free-living heterotrophic bacteria,” Lett. Appl. Microbiol. 20, 349–352 (1995). https://doi.org/10.1111/j.1472-765X.1995.tb01318.x

    Article  Google Scholar 

  50. A. Shehata, M. Kühnert, S. Haufe, and M. Krüger, “Neutralization of the antimicrobial effect of glyphosate by humic acid in vitro,” Chemosphere 104, 258–261 (2014). https://doi.org/10.1016/j.chemosphere.2013.10.064

    Article  Google Scholar 

  51. P. Sidoli, N. Baran, and R. Angulo-Jaramillo, “Glyphosate and AMPA adsorption in soils: laboratory experiments and pedotransfer rules,” Environ. Sci. Pollut. Res. 23, 5733–5742 (2016). https://doi.org/10.1007/s11356-015-5796-5

    Article  Google Scholar 

  52. V. Silva, L. Montanarella, A. Jones, O. Fernández-Ugalde, H. G. J. Mol, C. J. Ritsema, and V. Geissen, “Distribution of glyphosate and aminomethylphosphonic acid (AMPA) in agricultural topsoils of the European Union,” Sci. Total Environ. 621, 1352–1359 (2018). https://doi.org/10.1016/j.scitotenv.2017.10.09

    Article  Google Scholar 

  53. G. W. Stratton and K. E. Stewart, “Effects of the herbicide glyphosate on nitrogen cycling in an acid forest soil,” Water, Air, Soil Pollut. 60, 231–247 (1991). https://doi.org/10.1007/BF00282625

    Article  Google Scholar 

  54. A. Székács and B. Darvas, “Forty years with glyphosate,” in Herbicides—Properties, Synthesis and Control of Weeds (InTech, Rijeka, 2012), pp. 247–284. https://doi.org/10.5772/32491

  55. M. Tejada, “Evolution of soil biological properties after addition of glyphosate, diflufenican and glyphosate + diflufenican herbicides,” Chemosphere 76, 365–373 (2009). https://doi.org/10.1016/j.chemosphere.2009.03.040

    Article  Google Scholar 

  56. C. Wang, X. Lin, L. Li, L. Lin, and S. Lin, “Glyphosate shapes a dinoflagellate-associated bacterial community while supporting algal growth as sole phosphorus source,” Front. Microbiol. 8, (2017). https://doi.org/10.3389/fmicb.2017.02530

  57. M. X. Chen, Z. Y. Cao, Y. Jiang, and Z. W. Zhu, “Direct determination of glyphosate and its major metabolite, aminomethylphosphonic acid, in fruits and vegetables by mixed-mode hydrophilic interaction/weak anion-exchange liquid chromatography coupled with electrospray tandem mass spectrometry,” J. Chromatogr. A 1272, 90–99 (2013). https://doi.org/10.1016/j.chroma.2012.11.069

    Article  Google Scholar 

  58. M. Yao, C. Henny, and J. A. Maresca, “Freshwater bacteria release methane as a by-product of phosphorus acquisition,” Appl. Environ. Microbiol. 82, 6994–7003 (2016). https://doi.org/10.1128/AEM.02399-16

    Article  Google Scholar 

  59. M. C. Zabaloy, J. L. Garland, and M. A. Gomez, “An integrated approach to evaluate the impacts of the herbicides glyphosate, 2,4-D and metsulfuron-methyl on soil microbial communities in the Pampas region, Argentina,” Appl. Soil Ecol. 40, 1–12 (2012). https://doi.org/10.1016/j.apsoil.2008.02.004

    Article  Google Scholar 

  60. M. C. Zabaloy, G. P. Zanini, V. Bianchinotti, M. A. Gomez, and J. L. Garland, “Herbicides in the soil environment: linkage between bioavailability and microbial ecology,” in Herbicides, Theory and Applications (InTech, Rijeka, 2011), pp. 161–192. https://doi.org/10.5772/12880

  61. H. Zhan, Y. Feng, X. Fan, and S. Chen, “Recent advances in glyphosate biodegradation,” Appl. Microbiol. Biotechnol. 102, 5033–5043 (2018). https://doi.org/10.1007/s00253-018-9035-0

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 19-16-00053 (refinement of the methods of molecular-biological analyses); soil sampling and soil analyses were performed within the framework of the federal budget theme (CITIS no. 116020110002-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kulikova.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Translated by T. Chicheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikova, N.A., Zhelezova, A.D., Voropanov, M.G. et al. Monoammonium Phosphate Effects on Glyphosate in Soils: Mobilization, Phytotoxicity, and Alteration of the Microbial Community. Eurasian Soil Sc. 53, 787–797 (2020). https://doi.org/10.1134/S106422932006006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422932006006X

Keywords:

Navigation