Skip to main content
Log in

Responsivity calculation of group IV-based interband MQWIP

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This paper presents a detailed calculation of the responsivity in a SiGeSn/GeSn inter-band multiple quantum well infrared photodetector (MQWIP). The photogenerated current is obtained by the solving rate equation at steady state considering the inter-well carrier transport mechanism in MQWIPs. The responsivity is studied as a function of variation of bias, number of wells, well width, and carrier transfer parameters such as capture probability and escape rate. Results show that a significant responsivity in the order of mA/W is obtained for a particular choice of the number of wells and applied bias. This work also reveals that the number of wells in the device that can be used to enhance responsivity is limited by the carrier capture probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Guériaux, V., de Brière l’Isle, N., Berurier Arnaud, Odile, H., Manissadjian, A., Facoetti, H., Marcadet, X., Carras, M., Trinité, V., Nedelcu, A.: Quantum well infrared photodetectors: present and future. Opt. Engg. 50, 061013 (2011)

    Article  Google Scholar 

  2. Rogalski, A.: Infrared detectors: an overview. Infrared Phy. Tech. 43, 187–210 (2002)

    Article  Google Scholar 

  3. Downs, C., Vandervelde, T.E.: Progress in infrared photodetectors Since 2000. Sensors 13, 5054–5098 (2013)

    Article  Google Scholar 

  4. Ang, K.-W., Liow, T.-Y., Fang, Q., Yu, M. B., Ren, F. F., Zhu S. Y., Zhang, J., Ng, J. W., Song, J. F., Xiong, Y. Z., Lo, G. Q.,Kwong,D.-L.: Silicon photonics technologies for monolithic electronic-photonic integrated circuit (EPIC) applications: current progress and future outlook. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), pp. 1–4 (2009)

  5. Lo, G.Q., Ang, K.W., Liow, T.Y., Fang, Q., Zhang, J., Zhu, S.Y., Song, J.F., Xiong, Y.Z., Ren, F.F., Yu, M.B., Kwong, D.-L.: Silicon photonics technologies for monolithic electronic-photonic integrated circuit. ECS Trans. 28, 3–11 (2010)

    Article  Google Scholar 

  6. Soref, R.: Mid-infrared photonics in silicon and germanium. Nat. Phot. 4, 495–497 (2010)

    Article  Google Scholar 

  7. Roelkens, G.: Silicon-based photonic integration beyond the telecommunication wavelength range. IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014)

    Article  Google Scholar 

  8. Colace, L., Balbi, M., Masini, G., Assanto, G., Luan, H.-C., Kimerling, L.C.: Ge on Si p-i-n photodiodes operating at 10 Gbit/s. Appl. Phys. Lett. 88(101111), 1–3 (2006)

    Google Scholar 

  9. El Kurdi, M., Kociniewski, T., Ngo, T.-P., Boulmer, J., Débarre, D., Boucaud, P., Damlencourt, J.F., Kermarrec, O., Bensahel, D.: Enhanced photoluminescence of heavily n-doped germanium. Appl. Phy. Lett. 94, 191107 (2009)

    Article  Google Scholar 

  10. Kouvetakis, J., Menedez, J., Chizmeshya, A.V.G.: Tin based group IV semiconductors: new platforms for opto and micro electronics and silicon. Ann. Rev. Mater. Res. 36, 497–554 (2006)

    Article  Google Scholar 

  11. Gassenq, A., Gencarelli, F., Van Campenhout, J., Shimura, Y., Loo, R., Narcy, G., Vincent, B., Roelkens, G.: GeSn/Ge heterostructure short-wave infrared photodetectors on silicon. Opt. Express 20, 27297–27303 (2012)

    Article  Google Scholar 

  12. Werner, J., Oehme, M., Schmid, M., Kaschel, M., Schirmer, A., Kasper, E., Schulze, J.: Germanium-tin p-i-n photodetecors integrated on integrated on silicon grown by molecular beam epitaxy. App. Phys. Lett. 98(6), 061108 (2011)

    Article  Google Scholar 

  13. Zheng, J., Wang, S., Liu, Z., Cong, H., Xue, C., Li, C., Zuo, Y., Cheng, B., Wang, Q.: GeSn pin photodetectors with GeSn layer grown by magnetron sputtering epitaxy. App. Phys. Lett. 108(3), 033503 (2016)

    Article  Google Scholar 

  14. Daukes, E., Kawaguchi, K., Zhang, J.: Strain-balanced criteria for multiple quantum well structures and its signature in X-ray rocking curves. Cryst. Growth Des. 2, 287–292 (2002)

    Article  Google Scholar 

  15. Pareek, P., Das, M.K.: Theoretical analysis of direct transition in SiGe Sn/GeSn strain balanced QWIP. Opt. Quantum Electron. 48, 1–11 (2016)

    Article  Google Scholar 

  16. Pareek, P., Das, M.K., Kumar, S.: Theoretical analysis of tin incorporated group IV alloy based QWIP. Superlatt. Microst. 107, 56–68 (2017)

    Article  Google Scholar 

  17. Ryzhii, V.: Impact of transit time and capture effects on high-frequency performance of multiple quantum well infrared photodetectors. IEEE Trans. Electron. Devices 45, 293–298 (1998)

  18. Levine, B.F.: Quantum well infrared photodetectors. J. App. Phy. 74, R1 (1993)

    Article  Google Scholar 

  19. Ryzhii, V.: Theory of quantum well IR photodetectors with tunneling electron injection. IEEE Proc. Optoelectron. 144, 343–349 (1997)

    Article  Google Scholar 

  20. Chang, G.E., Chang, S.W., Chuang, S.L.: Strain-balanced GezSn1-zSixGey Sn1-x-y multiple-quantum-well lasers. IEEE J. Quantum Electron. 46, 1813–1820 (2010)

    Article  Google Scholar 

  21. Daukes, E., Kawaguchi, K., Zhang, J.: Strain-balanced criteria for multiple quantum well structures and its signature in X-ray rocking curves. Cryst. Growth Des. 2, 287–292 (2002)

    Article  Google Scholar 

  22. Wirths, S., Buca, D., Mantl, S.: Si-Ge-Sn alloys: from growth to application. Prog. Cryst. Growth Charact. Mater. 62, 1–39 (2016)

    Article  Google Scholar 

  23. Dou, W.: Structural and optical characteristics of gesn quantum wells for silicon-based mid-infrared optoelectronic applications. J. Electron. Mater. 45(12), 6265–6272 (2016). doi:10.1007/s11664-016-5031-2

    Article  Google Scholar 

  24. Ghetmiri, S.A.: Study of a SiGeSn/GeSn/SiGeSn structure toward direct bandgap type-I quantum well for all group-IV optoelectronics. Opt. Lett. 42(3), 387–390 (2017)

    Article  Google Scholar 

  25. Zhou, G., Runge, P.: Modeling of multiple-quantum-well p-i-n photodiodes. IEEE J. Quantum Electron. 50(4), 220–227 (2014)

    Article  Google Scholar 

  26. Ryzhii, V.: High-frequency performance of single quantum well infrared photodetectors at high power densities. IEEE Trans. Electron. Dev. 45(8), 1797–1803 (1998)

    Article  Google Scholar 

  27. Van de Walle, C.G.: Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 39, 1871–1883 (1989)

    Article  Google Scholar 

  28. Gunapala, S.D., Rhiger, D.R., Jagadish, C.: Advances in Infrared Photodetectors, vol. 84, 1st edn. Academic Press, Cambridge (2011)

    Google Scholar 

  29. Khalil, H.M., Balkan, N.: Carrier trapping and escape times in p-i-n GaInNAs MQW structures. Nanosc. Res. Lett. 9, 1–4 (2014)

    Article  Google Scholar 

  30. Das, M.K., Das, N.R.: Calculating the responsivity of a resonant cavity enhanced Si1-xGex/Si multiple quantum well photodetector. J. App. Phy. 105(093118), 1–8 (2009)

    Google Scholar 

  31. Cai, Y., Han, Z., Wang, X., Camacho-Aguilera, R.E., Kimerling, L.C., Michel, J., Liu, J.: Analysis of threshold current behavior for bulk and quantum-well germanium laser structures. IEEE J. Sel. Top. Quantum Electron. 19, 1901009 (2013)

    Article  Google Scholar 

  32. Sze, S.M.: Physics of Semiconductor Devices. Wiley-Interscience, New Jersey (1969)

    Google Scholar 

Download references

Acknowledgements

This work is partly supported by the Center of Excellence in Renewable Energy, project under MHRD, Govt. of India (F. No. 5-6/2013-TS-VII) at Indian Institute of Technology (Indian School of Mines) Dhanbad, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Pareek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pareek, P., Das, M.K. & Kumar, S. Responsivity calculation of group IV-based interband MQWIP. J Comput Electron 17, 319–328 (2018). https://doi.org/10.1007/s10825-017-1071-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-1071-y

Keywords

Navigation