Skip to main content
Log in

Harmonics Generation in Experiments with Free-Electron Lasers in the X-Ray Wavelength Range: a Theoretical Analysis

  • PHOTONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The generation of undulator X-ray radiation harmonics in free-electron lasers (FELs), which has been observed in different experiments, has been given an analytical explanation. Expressions for spectrum lines and radiation intensity are written in explicit form in terms of generalized Bessel and Airy functions with regard to the spreads of electron energy, electron beam size, emittance, spectrum line splitting, and magnetic field constant components. The theory proposed here adequately explains the spectrum and intensity of radiation harmonics in all experiments with a SACLA FEL, a Linac coherent light source (LCLS) based on an FEL, PAL-XFEL, SwissFEL, and other equipment conducted under different conditions in a wide wavelength range, including hard X-ray radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. B. W. J. McNeil and N. R. Thompson, Nat. Photonics 4, 814 (2010).

    Article  ADS  Google Scholar 

  2. C. Pellegrini, A. Marinelli, and S. Reiche, Rev. Mod. Phys. 88, 015006 (2016).

    Article  ADS  Google Scholar 

  3. G. Margaritondo, Riv. Nuovo Cimento 40 (9), 411 (2017).

    Google Scholar 

  4. V. G. Bagrov, G. S. Bisnovaty-Kogan, V. A. Bordovitsyn, A. V. Borisov, O. F. Dorofeev, V. Ya. Epp, Y. L. Pivovarov, O. V. Shorokhov, and V. C. Zhukovsky, Synchrotron Radiation Theory and Its Development, Ed. by V. A. Bordovitsyn (Word Sci., Singapore, 1999), p. 447.

    Google Scholar 

  5. K. Zhukovsky, J. Phys. D: Appl. Phys. 50 (50), 505601 (2017). https://doi.org/10.1088/1361-6463/aa97b1

    Article  Google Scholar 

  6. K. Zhukovsky, J. Opt. 20 (9), 095003 (2018).

    Article  ADS  Google Scholar 

  7. K. Zhukovsky, Results Phys. 13, 102248 (2019).

    Article  Google Scholar 

  8. K. Zhukovsky and A. Kalitenko, J. Synchrotron Radiat. 26, 159 (2019).

    Article  Google Scholar 

  9. K. Zhukovsky, J. Synchrotron Radiat. 26, 1481 (2019).

    Article  MathSciNet  Google Scholar 

  10. K. V. Zhukovsky and A. M. Kalitenko, Russ. Phys. J. 62 (2), 354 (2019). https://doi.org/10.1007/s11182-019-01719-7

    Article  Google Scholar 

  11. K. V. Zhukovsky, Russ. Phys. J. 62 (6), 1043 (2019). https://doi.org/10.1007/s11182-019-01812-x

    Article  Google Scholar 

  12. K. V. Zhukovskii, Tech. Phys. 64 (3), 389 (2019). https://doi.org/10.1134/S1063784219030289

    Article  Google Scholar 

  13. K. V. Zhukovskii and A. M. Kalitenko, Tech. Phys. 65 (8), 1285 (2020). https://doi.org/10.1134/S1063784220080241

    Article  Google Scholar 

  14. K. V. Zhukovsky, Moscow Univ. Phys. Bull. 74 (5), 480 (2019). https://doi.org/10.3103/S0027134919050187

    Article  ADS  Google Scholar 

  15. N. Nakao, M. Kokubo, K. Imasaki, M. Fujita, K. Ohkubo, A. Moon, P. K. Roy, H. Tanaka, N. Ohigashi, Y. Sunawaki, K. Mima, S. Nakai, and C. Yamanaka, Nucl. Instrum. Methods Phys. Res., Sect. A 407, 374 (1998).

    Google Scholar 

  16. G. Sharma, G. Mishra, and M. Gehlot, J. Instrum. 9, T01002 (2014).

    Article  Google Scholar 

  17. F. Bazouband and B. Maraghechi, J. Plasma Phys. 81 (3), 905810305 (2015).

    Article  Google Scholar 

  18. M. Asakawa, K. Mima, S. Nakai, K. Masaki, and C. Yamanaka, Nucl. Instrum. Methods Phys. Res., Sect. A 318, 538 (1992).

    Google Scholar 

  19. M. Asakawa, N. Inoue, K. Mima, S. Nakai, K. Imasaki, M. Fujita, J. Chen, C. Yamanaka, N. Nakao, T. Agari, T. Asakuma, A. Moon, N. Ohigashi, T. Minamiguchi, and Y. Tsunawaki, Nucl. Instrum. Methods Phys. Res., Sect. A 358, 399 (1995).

    Google Scholar 

  20. M. Asakawa, N. Nakao, H. Ohkubob, T. Ishida, T. Watanabec, E. Yasuda, Y. Okudad, M. Fujita, J. Chen, A. Moon, P. K. Royb, S. Kuruma, K. Imasaki, K. Mimah, N. Ohigashi, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 375, 416 (1996).

    Google Scholar 

  21. D. Iracane and P. Bamas, Phys. Rev. Lett. 67, 3086 (1991).

    Article  ADS  Google Scholar 

  22. K. Lee, J. Mun, S. H. Park, K.-H. Jang, Y. U. Jeong, and N. A. Vinokurov, Nucl. Instrum. Methods Phys. Res., Sect. A 776, 27 (2015).

    Google Scholar 

  23. K. Halbach, J. Phys. Colloq. 44, C1 (1983).

    Article  Google Scholar 

  24. K. Halbach, J. Appl. Phys. 57 (8), 3605 (1985).

    Article  ADS  Google Scholar 

  25. B. Prakash, V. Huse, M. Gehlot, G. Mishra, and S. Mishra, Optik 127, 1639 (2016).

    Article  ADS  Google Scholar 

  26. V. Huse, G. Sharma, S. Mishra, and G. Mishra, Chin. Phys. Lett. 31 (3), 034101 (2014).

    Article  ADS  Google Scholar 

  27. H. Jeevakhan and G. Mishra, Nucl. Instrum. Methods Phys. Res., Sect. A 656, 101 (2011).

    Google Scholar 

  28. V. Gupta and G. Mishra, Nucl. Instrum. Methods Phys. Res., Sect. A 574, 150 (2007).

    Google Scholar 

  29. V. Gupta and G. Mishra, Nucl. Instrum. Methods Phys. Res., Sect. A 556 (1), 350 (2006).

    Google Scholar 

  30. Y. Yang and W. Ding, Phys. Plasmas 5 (3), 782 (1998).

    Article  ADS  Google Scholar 

  31. G. Mishra and A. Sharma, Nucl. Instrum. Methods Phys. Res., Sect. A 976, 164287 (2020).

    Google Scholar 

  32. Th. Schmidt, A. Anghel, P. Böhler, M. Brügger, M. Calvi, S. Danner, P. Huber, A. Keller, and M. Locher, “Magnetic design of an APPLE III undulator for SwissFEL,” in Proc. FEL2014 (Basel, Switzerland, 2014), p. 116 (MOP043). http://accelconf.web.cern.ch/AccelConf/FEL2014/ papers/mop043.pdf.

  33. A. B. Temnykh, Phys. Rev. Spec. Top.–Accel. Beams 11, 120702 (2008).

    Article  ADS  Google Scholar 

  34. H.-D. Nuhn, S. D. Anderson, R. N. Coffee, Y. Ding, Z. Huang, M. Ilchen, Yu. I. Levashov, A. A. Lutman, J. P. MacArthur, A. Marinelli, S. P. Moeller, F. Peters, Z.R. Wolf, J. Buck, G. Hartmann, et al., “Commissioning of the Delta polarizing undulator at LCLS,” in Proc. FEL2015 (Daejeon, Korea, 2015), p. 757 (WED01). https://accelconf.web.cern.ch/FEL2015/papers/wed01.pdf

  35. J. R. Henderson, L. T. Campbell, H. P. Freund, and B.W.J. McNeil, New J. Phys. 18, 062003 (2016).

    Article  ADS  Google Scholar 

  36. K. Zhukovsky, J. Electromagn. Waves Appl. 28 (15), 1869 (2014).

    Article  Google Scholar 

  37. K. V. Zhukovsky, Phys.-Usp. (2021) (in press). https://doi.org/10.3367/UFNe.2020.06.038803

  38. K. Zhukovsky, Opt. Laser Technol. 131, 106311 (2020).

    Article  Google Scholar 

  39. H. Jeevakhan and G. Mishra, Opt. Commun. 335, 126 (2015).

    Article  ADS  Google Scholar 

  40. K. V. Zhukovsky, J. Math. Anal. Appl. 446, 628 (2017).

    Article  MathSciNet  Google Scholar 

  41. H.-S. Kang, C.-K. Min, H. Heo, C. Kim, H. Yang, G.  Kim, I. Nam, S. Y. Baek, H.-J. Choi, G. Mun, B. R. Park, Y. J. Suh, D. C. Shin, J. Hu, J. Hong, et al., Nat. Photonics 11, 708 (2017).

    Article  ADS  Google Scholar 

  42. P. Emma, “First lasing of the LCLS X-ray FEL at 1.5 Å,” in Proc. PAC09 (Vancouver, BC, Canada, 2009), p. TH3PBI01.

  43. P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brachmann, P. Bucksbaum, R. Coffee, F. J. Decker, Y. Ding, D. Dowell, S. Edstrom, A. Fisher, J. Frisch, et al., Nat. Photonics 4, 641 (2010).

    Article  ADS  Google Scholar 

  44. N. A. Vinokurov and E. B. Levichev, Phys.-Usp. 58 (9), 850 (2015). https://doi.org/10.3367/UFNe.0185.201509b.0917

    Article  Google Scholar 

  45. G. Geloni, E. Saldin, E. Schneidmiller, and M. Yukov, Opt. Commun. 271, 207 (2007).

    Article  ADS  Google Scholar 

  46. D. F. Alferov, Yu. A. Bashmakov, and P.A. Cherenkov, Sov. Phys.-Usp. 32, 200 (1989). https://doi.org/10.1070/PU1989v032n03ABEH002688

    Article  ADS  Google Scholar 

  47. V. G. Bagrov, G. S. Bisnovatyi-Kogan, and V. A. Bordovitsyn, Theory of Radiation of Relativistic Particles (Fizmatlit, Moscow, 2002) [in Russian].

    Google Scholar 

  48. V. G. Bagrov, I. M. Ternov, and B. V. Kholomai, Radiation of Relativistic Electrons in a Longitudinal Periodic Electric Field of a Crystal (TFSO Akad. Nauk SSSR, Tomsk, 1987) [in Russian].

    Google Scholar 

  49. D. F. Alferov, Yu. A. Bashmakov, and E. G. Bessonov, Sov. Phys.-Tech. Phys. 18, 1336 (1973).

    ADS  Google Scholar 

  50. E. G. Bessonov, Preprint FIAN No. 18 (Lebedev Phys. Inst. Acad. Sci. USSR, Moscow, 1982).

    Google Scholar 

  51. D. Ratner, A. Brachmann, F. J. Decker, Y. Ding, D. Dowell, P. Emma, A. Fisher, J. Frisch, S. Gilevich, Z. Huang, P. Hering, R. Iverson, J. Krzywinski, H. Loos, M. Messerschmidt, et al., Phys. Rev. Spec. Top.–Accel. Beams 14, 060701 (2011).

    Article  ADS  Google Scholar 

  52. S. Owada, K. Togawa, T. Inagaki, T. Hara, T. Tanaka, Y. Joti, T. Koyama, K. Nakajima, H. Ohashi, Y. Senba, T. Togashi, K. Tono, M. Yamaga, H. Yumoto, M. Yabashi, et al., J. Synchrotron Radiat. 25, 282 (2018).

    Article  Google Scholar 

  53. I. Inoue, Nat. Photonics 13, 319 (2019).

    Article  ADS  Google Scholar 

  54. http://xfel.riken.jp/eng/users/bml02-11.html

  55. H. Ego, “RF system of the SPring-8 upgrade project,” in Proc. IPAC2016 (Busan, Korea, 2016), MOPMW009.

  56. K. Tono, T. Hara, M. Yabashi, and H. Tanaka. J. Synchrotron Radiat. 26, 595 (2019).

    Article  Google Scholar 

  57. T. Ishikawa, H. Aoyagi, T. Asaka, Y. Asano1, N. Azumi, T. Bizen, H. Ego, K. Fukami, T. Fukui, Y. Furukawa, S. Goto, H. Hanaki, T. Hara, T. Hasegawa, T. Hatsui, et al., Nat. Photonics 6, 540 (2012).

    Article  ADS  Google Scholar 

  58. K. Tono, T. Togashi, Y. Inubushi, T. Sato, T. Katayama, K. Ogawa, H. Ohashi, H. Kimura, S. Takahashi, K. Takeshita, H. Tomizawa, S. Goto, T. Ishikawa, and M. Yabashi, New J. Phys. 15, 083035 (2013).

    Article  ADS  Google Scholar 

  59. C. J. Milne, T. Schietinger, M. Aiba, A. Alarcon, J. Alex, A. Anghel, V. Arsov, C. Beard, P. Beaud, S. Bettoni, M. Bopp, H. Brands, M. Brönnimann, I. Brunnenkant, M. Calvi, et al., Appl. Sci. 7, 720 (2017).

    Article  Google Scholar 

  60. R. Abela, P. Beaud, J. A. van Bokhoven, M. Chergui, T. Feurer, J. Haase, G. Ingold, S. L. Johnson, G. Knopp, H. Lemke, C. J. Milne, B. Pedrini, P. Radi, G. Schertler, J. Standfuss, et al., Struct. Dyn. 4, 061602 (2017).

    Article  Google Scholar 

  61. P. Juranić, J. Rehanek, C. A. Arrell, C. Pradervand, A. Cassar, M. Calvi, R. Ischebeck, C. Erny, P. Heimgartner, I. Gorgisyan, V. Thominet, K. Tiedtke, A. Sorokin, R. Follath, M. Makita, et al., J. Synchrotron Radiat. 26, 906 (2019).

    Article  Google Scholar 

  62. R. Abela, A. Alarcon, J. Alex, C. Arrell, V. Arsov, S. Bettoni, M. Bopp, C. Bostedt, H.-H. Braun, M. Calvi, T. Celcer, P. Craievich, A. Dax, P. Dijkstal, S. Dordevic, et al., J. Synchrotron Radiat. 26, 1073 (2019).

    Article  Google Scholar 

  63. S. V. Milton1, E. Gluskin, N. D. Arnold, C. Benson, W. Berg, S. G. Biedron, M. Borland, Y.-C. Chae, R. J. Dejus, P. K. Den Hartog, B. Deriy, M. Erdmann, Y. I. Eidelman, M. W. Hahne, Z. Huang, et al., Science 292 (5524) 2037 (2001).

  64. S. G. Biedron, R. J. Dejus, Z. Huang, S. V. Milton, V. Sajaev, W. Berg, M. Borland, P. K. Den Hartog, M. Erdmann, W. M. Fawley, H. P. Freund, E. Gluskin, K. J. Kim, J. W. Lewellen, Y. Li, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 483, 94 (2002).

    Google Scholar 

  65. T. Tschentscher, C. Bressler, J. Grünert, A. Madsen, A. P. Mancuso, M. Meyer, A. Scherz, H. Sinn, and U. Zastrau, Appl. Sci. 7 (6), 592 (2017). https://doi.org/10.3390/app7060592

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Zhukovskii.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukovskii, K.V. Harmonics Generation in Experiments with Free-Electron Lasers in the X-Ray Wavelength Range: a Theoretical Analysis. Tech. Phys. 66, 481–490 (2021). https://doi.org/10.1134/S1063784221030245

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221030245

Navigation