Skip to main content
Log in

Theoretical Analysis of Radiation Properties of X-Ray Free-Electron Lasers

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We perform a comparative analysis of the radiation of X-ray free-electron lasers (FELs) LCLS, PAL-XFEL, SwissFEL, SACLA, FLASH2, and European XFEL, as well as the visible radiation of the LEUTL FEL. The spectral characteristics of the considered FELs with account of all the main losses due to the electron energy spread, diffraction, emittance, and the beam diameter are compared. The results of the theoretical studies agree well with the experimental data available for all the FELs under consideration. The possibility to use and amplify harmonics in X-ray FELs with an adjustable dipole parameter (SwissFEL, LCLS-II, SACLA, FLASH2, and European XFEL) is studied. The advantages of amplifying the self-seed radiation of HLSS harmonics are demonstrated, at which the FEL can be made shorter due to efficient bunching at the harmonic wavelengths in a buncher with a great dipole parameter k of the undulator. The possibility of forced bunching discontinuity between the LCLS-II undulators and its influence on the third harmonic amplification are studied theoretically. Comparative analysis of the parameters of radiation, electron beams, and undulators of the considered FELs in various operation regimes is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. W. J. McNeil and N.R.Thompson, Nat. Photonics, 4, 814–821 (2010). https://doi.org/10.1038/nphoton.2010.239

    Article  ADS  Google Scholar 

  2. C.Pellegrini, A. Marinelli, and S.Reiche, Rev. Mod. Phys., 88, 015006 (2016). https://doi.org/10.1103/RevModPhys.88.015006

    Article  ADS  Google Scholar 

  3. P. Schmuser, M.Dohlus, J.Rossbach, and C.Behrens, Free-Electron Lasers in the Ultraviolet and XRay Regime. Springer Tracts in Modern Physics, Springer, Cham (2014).

  4. Z. Huang and K. J. Kim, Phys. Rev. ST-AB, 10, 034801 (2007). https://doi.org/10.1103/PhysRevSTAB.10.034801

    Article  ADS  Google Scholar 

  5. G. Margaritondo and P.R.Ribic, J. Synchrotron Rad., 18, 101–108 (2011). https://doi.org/10.1107/S090904951004896X

    Article  Google Scholar 

  6. E. L. Saldin, E.A. Schneidmiller, and M.V.Yurkov, The Physics of Free Electron Lasers, Springer-Verlag, Berlin (2000).

    Book  Google Scholar 

  7. R. Bonifacio, C.Pellegrini, and L.Narducci, Opt. Comm., 50, 373–378 (1984). https://doi.org/10.1016/0030-4018(84)90105-6

    Article  ADS  Google Scholar 

  8. E. J. Jaeschke, S.Khan, J.R. Schneider, and J. B.Hastings, ed., Synchrotron Light Sources and Free-Electron Lasers, Springer, Cham (2016).

    Google Scholar 

  9. G. Dattoli, P. L. Ottaviani, and S.Pagnutti, J. Appl. Phys., 97, 113102 (2005). https://doi.org/10.1063/1.1886890

    Article  ADS  Google Scholar 

  10. F. De Martini, Laser Handbook, North-Holland, Amsterdam (1990).

    Google Scholar 

  11. R. Bonifacio, L. De Salvo, and P.Pierini, Nucl. Instrum. A, 293, 627–629 (1990). https://doi.org/10.1016/0168-9002(90)90334-3

    Article  ADS  Google Scholar 

  12. Z. Huang and K.-J.Kim, Phys. Rev. E, 62, 7295–7308 (2000). https://doi.org/10.1103/PhysRevE.62.7295

    Article  ADS  Google Scholar 

  13. K. Zhukovsky and A. Kalitenko, J. Synchrotron Rad., 26, 159–169 (2019). https://doi.org/10.1107/S1600577518012444

    Article  Google Scholar 

  14. K. Zhukovsky, Results Phys., 13, 102248 (2019). https://doi.org/10.1016/j.rinp.2019.102248

    Article  Google Scholar 

  15. K. V. Zhukovsky, J. Synchrotron Rad., 26, 1481–1488 (2019). https://doi.org/10.1107/S1600577519008415

    Article  MathSciNet  Google Scholar 

  16. K. V. Zhukovsky, Russ.Phys. J., 62, No. 6, 1043–1053 (2019). 10.17223/00213411/62/6/109

  17. K. Zhukovsky and I. Fedorov, Symmetry, 13, No. 1, 135 (2021). https://doi.org/10.3390/sym13010135

    Article  ADS  Google Scholar 

  18. V. I. Alexeev and E.G.Bessonov, Nucl. Instr. Meth. A, 308, 140–141 (1991). https://doi.org/10.1016/0168-9002(91)90612-T

    Article  ADS  Google Scholar 

  19. E. G. Bessonov, On the Theory of Sources of Undulator Radiation [in Russian], Preprint No. 18, P. N. Lebedev Phys. Inst. Acad. Sci. USSR (1982).

  20. V. I. Alekseev and E.G.Bessonov, Proc. VI All-Union Meeting on the Use of Synchrotron Radiation SI-84, July 4–6, 1984, Novosibirsk, pp. 92–94 [in Russian].

  21. E. G. Bessonov, Nucl. Instrum. Meth. Phys. Res. A, 282, 405–412 (1989). https://doi.org/10.1016/0168-9002(89)90012-0

    Article  ADS  Google Scholar 

  22. K. Lee, J. Mun, S.H.Park, et al., Nucl. Instrum. Meth. Phys. Res. A, 776, 27–33 (2015). https://doi.org/10.1016/j.nima.2014.12.052

    Article  ADS  Google Scholar 

  23. R. Bonifacio, L. De Salvo, P. Pierini, et al., Phys. Rev. Lett., 73, 70–73 (1994). https://doi.org/10.1103/PhysRevLett.73.70

    Article  ADS  Google Scholar 

  24. E. A. Schneidmiller and M. V.Yurkov, Phys. Rev. ST-AB, 15, 080702 (2012). https://doi.org/10.1103/PhysRevSTAB.15.080702

    Article  ADS  Google Scholar 

  25. B. W. J. McNeil, G.R. M.Robb, M. W.Poole, and N.R.Thompson, Phys. Rev. Lett., 96, 084801 (2006). https://doi.org/10.1103/PhysRevLett.96.084801

    Article  ADS  Google Scholar 

  26. K. V. Zhukovskii and A.M.Kalitenko, Tech. Phys., 65, No. 8, 1285–1295 (2020). https://doi.org/10.1134/S1063784220080241

    Article  Google Scholar 

  27. K. Zhukovsky, J. Opt., 20, 095003 (2018). https://doi.org/10.1088/2040-8986/aad6af

    Article  ADS  Google Scholar 

  28. L.-H.Yu, M. Babzien, I. Ben-Zvi, et al., Science, 289, 932–934 (2000). https://doi.org/10.1126/science.289.5481.932

    Article  ADS  Google Scholar 

  29. T. Shaftan and L.H.Yu, Phys. Rev. E, 71, 046501 (2005). https://doi.org/10.1103/PhysRevE.71.046501

    Article  ADS  Google Scholar 

  30. S.Ackermann, A.Azima, S. Bajt, et al., Phys. Rev. Lett., 111, 114801 (2013). https://doi.org/10.1103/PhysRevLett.111.114801

    Article  ADS  Google Scholar 

  31. L. H.Yu, L.DiMauro, A.Doyuran, et al., Phys. Rev. Lett., 91, 074801 (2003). https://doi.org/10.1103/PhysRevLett.91.074801

    Article  ADS  Google Scholar 

  32. E. Allaria, Phys. Rev. ST Accel. Beams, 16, 030703 (2013). https://doi.org/10.1103/PhysRevSTAB.16.030703

    Article  ADS  Google Scholar 

  33. E. L. Saldin, E.A. Schneidmiller, and M.V.Yurkov, Opt. Comm., 202, 169–187 (2002). https://doi.org/10.1016/S0030-4018(02)01091-X

    Article  ADS  Google Scholar 

  34. G. Stupakov, Phys. Rev. Lett., 102, 074801 (2009). https://doi.org/10.1103/PhysRevLett.102.074801

    Article  ADS  Google Scholar 

  35. K. Zhukovsky, Opt. Comm., 418, 57–64 (2018). https://doi.org/10.1016/j.optcom.2018.02.039

    Article  ADS  Google Scholar 

  36. K. V. Zhukovsky, Russ. Phys. J., 61, No. 2, 278–286 (2018). https://doi.org/10.1007/s11182-018-1398-2

    Article  Google Scholar 

  37. K. V. Zhukovskii, Tech. Phys., 2019, Vol. 64, No. 3, 389–398 (2019). 10.1134/S1063784219030289

  38. K. Zhukovsky, J. Appl. Phys., 122, 233103 (2017). https://doi.org/10.1063/1.5001794

    Article  ADS  Google Scholar 

  39. K. Zhukovsky, EPL, 119, 34002 (2017). https://doi.org/10.1209/0295-5075/119/34002

    Article  ADS  Google Scholar 

  40. B. Faatz, M. Braune, O.Hensle, et al., Appl. Sci., 7, No. 11, 1114 (2017). https://doi.org/10.3390/app7111114

    Article  Google Scholar 

  41. E. A. Schneidmiller, B. Faatz, M. Kuhlmann, et al., Phys. Rev. Accelerators Beams, 20, 020705 (2017). https://doi.org/10.1103/PhysRevAccelBeams.20.020705

    Article  ADS  Google Scholar 

  42. M. Altarelli, R. Brinkmann, M. Chergui, et al, XFEL: The European X-ray Free-Electron Laser. Technical Design Report DESY 2006-097, DESY, Hamburg 2006.

  43. A. Altarelli, Phys. Res. B, 269, 2845–2849 (2011). https://doi.org/10.1016/j.nimb.2011.04.034

    Article  Google Scholar 

  44. T.Tschentscher, C.Bressler, J.Grunert, et al., Appl. Sci., 7, 592 (2017). https://doi.org/10.3390/app7060592

    Article  Google Scholar 

  45. E. A. Schneidmiller and M. V.Yurkov, Proc. 36th International Free Electron Laser Conf. (FEL 2014). 25–28 August 2014, Basel, Switzerland, pp. 204–209.

  46. E. A. Schneidmiller and M. V.Yurkov, Photon beam properties at the European XFEL, DESY, Hamburg (2010).

    Google Scholar 

  47. T.Togashi, E. J.Takahashi, K.Midorikawa, et al., Opt. Express, 19, 317–324 (2011). https://doi.org/10.1364/OE.19.000317

    Article  ADS  Google Scholar 

  48. H.-S.Kang, C.-K.Min, H.Heo, et al., Nat. Photonics, 11, 708–713 (2017). https://doi.org/10.1038/s41566-017-0029-8

    Article  ADS  Google Scholar 

  49. H.Yang, G.Kim, and H.-S.Kang, Nuclear Instrum. Meth. Phys. Res. A, 911, 51–54 (2018). https://doi.org/10.1016/j.nima.2018.09.122

    Article  ADS  Google Scholar 

  50. J. Hong, J.-H. Han, and S. J.Park, High Power Laser Science and Engineering, 3, e21 (2015). https://doi.org/10.1017/hpl.2015.18

    Article  Google Scholar 

  51. I. S.Ko, H. -S. Kang, H.Heo, et al., Appl. Sci., 7, 479 (2017). https://doi.org/10.3390/app7050479

    Article  ADS  Google Scholar 

  52. P. Emma, R.Akre, J. Arthur, et al., Nat. Photonics, 4, 641–647 (2010). https://doi.org/10.1038/nphoton.2010.176

    Article  ADS  Google Scholar 

  53. P. Emma, Proc. 23rd Particle Accelerator Conf. (PAC09). 4–8 May 2009, Vancouver, Canada, pp. 3115–3119.

  54. D.Ratner, A.Brachmann, F. J. Decker, et al., Phys. Rev. ST-AB, 14, 060701 (2011). https://doi.org/10.1103/PhysRevSTAB.14.060701

    Article  ADS  Google Scholar 

  55. C. J. Milne, T. Schietinger, M. Aiba, et al., Appl. Sci., 7, Art. no. 720 (2017). https://doi.org/10.3390/app7070720

  56. R. Abela, P. Beaud, J. A. van Bokhoven, et al., Struct. Dyn., 4, 061602 (2017). https://doi.org/10.1063/1.4997222

    Article  Google Scholar 

  57. P. Juranić, J.Rehanek, C.A.Arrell, et al., J. Synchrotron Rad., 25, 1238–1248 (2018). https://doi.org/10.1107/S1600577518005775

    Article  Google Scholar 

  58. R. Abela, A. Alarcon, J. Alex, et al., J. Synchrotron Rad., 26, 1073–1084 (2019). https://doi.org/10.1107/S1600577519003928

    Article  Google Scholar 

  59. E. Prat, R.Abela, M.Aiba, et al., Nat. Photonics, 14, 748–754 (2020). https://doi.org/10.1038/s41566-020-00712-8

    Article  ADS  Google Scholar 

  60. I. Inoue, T. Osaka, T. Hara, et al., Nat. Photonics, 13, 319–322 (2019). https://doi.org/10.1038/s41566-019-0365-y

    Article  ADS  Google Scholar 

  61. S.Owada, K.Togawa, T. Inagaki, et al., J. Synchrotron Rad., 25, 282–288 (2018). https://doi.org/10.1107/S1600577517015685

    Article  Google Scholar 

  62. T. Ishikawa, H.Aoyagi, T.Asaka, et al., Nat. Photonics, 6, 540–544 (2012). https://doi.org/10.1038/nphoton.2012.141

    Article  ADS  Google Scholar 

  63. http://xfel.riken.jp/eng/users/bml02-11.html

  64. H. Ego, T. Asaka, and T. Fukui, Proc. 7th Int. Particle Accelerator Conf. (IPAC2016), 8–13 May 2016, Busan, Korea. MOPMW009, pp. 414–416.

  65. T. Ishikawa, H.Aoyagi, T.Asaka, et al., Nat. Photonics, 6, 540–544 (2012). https://doi.org/10.1038/nphoton.2012.141

    Article  ADS  Google Scholar 

  66. K.Tono, T.Hara, M.Yabashi, and H.Tanaka, J. Synchrotron Rad., 26, 595–602 (2019). https://doi.org/10.1107/S1600577519001607

    Article  Google Scholar 

  67. K.Tono, et al., New J. Phys., 15, 083035 (2013). https://doi.org/10.1088/1367-2630/15/8/083035

    Article  ADS  Google Scholar 

  68. S. G. Biedron, R. J. Dejus, Z. Huang, et al., Nucl. Instrum. Meth. Phys. Res. A, 483, 94–100 (2002). https://doi.org/10.1016/S0168-9002(02)00430-8

    Article  ADS  Google Scholar 

  69. S. V. Milton, E.Gluskin, N.D.Arnold, et al., Science, 292, 2037–2041 (2000). https://doi.org/10.1126/science.1059955

    Article  ADS  Google Scholar 

  70. H.P. Freund, P. J. M. van der Slot, D. L.A.G.Grimminck, et al., New J. Phys, 19, 023020 (2017). https://doi.org/10.1088/1367-2630/aa59f1

    Article  ADS  Google Scholar 

  71. J.R.Henderson, L.T.Campbell, H.P. Freund, and B.W. J.McNeil, New J. Phys., 18, 062003 (2016). https://doi.org/10.1088/1367-2630/18/6/062003

    Article  ADS  Google Scholar 

  72. H.P. Freund and P. J.M. van der Slot, New J. Phys., 20, No. 7, 073017 (2018). https://doi.org/10.1088/1367-2630/aacf7e

    Article  ADS  Google Scholar 

  73. L. Giannessi, D.Alesini, P.Antici, et al., Phys. Rev. ST-AB, 14, 060712 (2011). https://doi.org/10.1103/PhysRevSTAB.14.060712

    Article  ADS  Google Scholar 

  74. G. Dattoli and P. L.Ottaviani, Opt. Comm., 204, 283–297 (2002). https://doi.org/10.1016/S0030-4018(02)01201-4

    Article  ADS  Google Scholar 

  75. G. Dattoli, P. L. Ottaviani, and S.Pagnutti. SA ENEA Report RT/2007/40/FIM, ENEA, Rome (2007).

    Google Scholar 

  76. G. Dattoli, V. V. Mikhailin, P. L.Ottaviani, and K.V. Zhukovsky, J. Appl. Phys., 100, No. 8, 084507 (2006). https://doi.org/10.1063/1.2357841

    Article  ADS  Google Scholar 

  77. G. Dattoli, L. Giannessi, P. L.Ottaviani, and C.Ronsivalle, J. Appl. Phys., 95, 3206–3210 (2004). https://doi.org/10.1063/1.1645979

    Article  ADS  Google Scholar 

  78. K. Zhukovsky, Opt. Laser Technology, 131, 106311 (2020). https://doi.org/10.1016/j.optlastec.2020.106311

    Article  Google Scholar 

  79. K. Zhukovsky, Moscow Univ. Phys. Bull., 75, No. 4, 285–294 (2020).

    Article  ADS  Google Scholar 

  80. K. Zhukovsky, Results Phys., 19, 103361 (2020). https://doi.org/10.1016/j.rinp.2020.103361

    Article  Google Scholar 

  81. K. Zhukovsky, Symmetry, 12, 1258 (2020). https://doi.org/10.3390/sym12081258

    Article  ADS  Google Scholar 

  82. K. Zhukovsky, J. Synchrotron Radiation, 27, 1648–1661 (2020). https://doi.org/10.1107/S1600577520012230

    Article  Google Scholar 

  83. K. V. Zhukovsky, Phys. Usp., 64, No. 3, 304–316 (2021). https://doi.org/10.3367/UFNe.2020.06.038803

    Article  ADS  Google Scholar 

  84. K. Zhukovsky and A. Kalitenko, Russ. Phys. J., 62, No. 2, 354–362 (2019). https://doi.org/10.1007/s11182-019-01719-7

    Article  Google Scholar 

  85. K. V. Zhukovskiy and A.M.Kalitenko, Radiophys. Quantum Electron., 62, No. 1, 52–64 (2019). https://doi.org/10.1007/s11141-019-09953-2

    Article  ADS  Google Scholar 

  86. D. F. Alferov, Yu.A.Bashmakov, and E. G. Bessonov, Sov. Phys.-Tech. Phys., 18, 1336 (1974).

    ADS  Google Scholar 

  87. D. F. Alferov, Y. A. Bashmakov, and E.G.Bessonov, Part. Accel., 9, 223–236 (1979).

    Google Scholar 

  88. D. F. Alferov, Yu.A.Bashmakov, and P. A. Cherenkov, Sov. Phys. Usp., 32, No. 3, 200–227 (1989). https://doi.org/10.1070/PU1989v032n03ABEH002688

    Article  ADS  Google Scholar 

  89. N. A. Vinokurov and E. B. Levichev, Phys. Usp., 58, No. 9, 850–871 (2015). https://doi.org/10.3367/UFNe.0185.201509b.0917

    Article  ADS  Google Scholar 

  90. Y. A. Bashmakov and E. G. Bessonov, Radiation Effects, 66, 85–94 (1982). https://doi.org/10.1080/00337578208211477

    Article  ADS  Google Scholar 

  91. B. Prakash, V. Huse, M.Gehlot, et al., Optik, 127, 1639–1643 (2016). https://doi.org/10.1016/j.ijleo.2015.11.085

    Article  ADS  Google Scholar 

  92. K. Zhukovsky, Waves Appl., 28, No. 15. P. 1869–1887 (2014). https://doi.org/10.1080/09205071.2014.945664

    Article  Google Scholar 

  93. K. V. Zhukovsky, J. Electromagn. Waves Appl., 29, No. 1, 132–142 (2015). https://doi.org/10.1080/09205071.2014.985854

    Article  ADS  Google Scholar 

  94. G. Dattoli, V. V. Mikhailin, and K. Zhukovsky, J. Appl. Phys., 104, 124507 (2008). https://doi.org/10.1063/1.3039094

    Article  ADS  Google Scholar 

  95. G. Dattoli, V. V. Mikhailin, and K. V. Zhukovsky, Mosc. Univ. Phys. Bull., 64, No. 5, 507–512 (2009).

    Article  ADS  Google Scholar 

  96. K. V. Zhukovsky, J. Math. Anal. Appl., 446, 628–647 (2017). https://doi.org/10.1016/j.jmaa.2016.08.054

    Article  MathSciNet  Google Scholar 

  97. V. G. Bagrov, V. F. Zal’mezh, M.M.Nikitin, and V. Y. Epp, Nucl. Instr. Meth. A, 261, 54–55 (1987). https://doi.org/10.1016/0168-9002(87)90561-4

  98. K. Zhukovsky and I. Fedorov, Vestnik MGU Ser. 3. Fiz. Astron., No. 1, 13–22 (2022).

  99. K.-J.Kim, Z.Huang, and R. Lindberg, Synchrotron Radiation and Free Electron Lasers. Principles of Coherent X-Ray Radiation, Cambridge Univ. Press, Cambridge (2017).

  100. Z. Huang and K.-J.Kim, Nucl. Instrum. Meth. Phys. Res. A, 475, 112–117 (2001). https://doi.org/10.1016/S0168-9002(01)01553-4

    Article  ADS  Google Scholar 

  101. V. L. Bratman, N. S. Ginzburg, and M. I.Petelin, J. Exp. Theor. Phys., 49, No. 3, 469–475 (1979).

    ADS  Google Scholar 

  102. H. Haus, IEEE J. Quantum Electron., 17, No. 8, 1427–1435. 10.1109/JQE.1981.1071289

  103. G. Dattoli, E. Di Palma, S. Licciardi, and E. Sabia, Appl. Sci., 11, 85 (2021). https://doi.org/10.3390/app11010085

    Article  Google Scholar 

  104. M. A.Wall and S.Bajt, Patent “MoRu/Be multilayers”, PCT WO 00/73823 A1, IPC G02B 5/08,PCT/US00/13549, filed May 17, 2000, publ. December 07, 2000.

  105. A. M.Kondratenko and E. L. Saldin, Zh. Tech. Fiz., 51, No. 8, 1633–1641 (1981).

    Google Scholar 

  106. L. Giannessi, Synchrotron Light Sources and Free-Electron Lasers, Springer (2016). https://doi.org/10.1007/978-3-319-14394-1_3

  107. M. Xie, Nucl. Instrum. Methods Phys. Res. A., 445, 59–66 (2000). https://doi.org/10.1016/S0168-9002(00)00114-5

    Article  ADS  Google Scholar 

  108. M. Xie, Proc. 1995 Particle Accelerator Conf., May 1–5, 1995, Dallas, USA, pp. 183–186.

  109. K. V. Zhukovsky, Mosc. Univ. Phys. Bull., 74, No. 5, 480–487 (2019).

    Article  ADS  Google Scholar 

  110. P. J. Neyman, J.Blau, K.R. Cohn, et al., 38th Int. Free Electron Laser Conf. (FEL2017), August 20–25, 2017, Santa Fe, USA, pp. 204–209. 10.18429/JACoW-FEL2017-MOP066

  111. https://lightsources.org/lightsources-of-the-world/

  112. https://portal.slac.stanford.edu/sites/lcls_public/lcls_ii/acc_phy/Lists/technotes/Public_view.aspx

  113. T. O.Raubenheimer, Proc. 60th ICFA Advanced Beam Dynamics Workshop on Future Light Sources (FLS2018), March 5–9, 2018, Shanghai, China, pp. 6–11. 10.18429/JACoW-FLS2018-MOP1WA02

  114. G. Marcus and J.Qiang, LCLS-II SCRF start-to-end simulations and global optimization as of September 2016 : rep. LCLS-II TN-17-04, Menlo Park, SLAC National Accelerator Lab. (2021).

  115. G. Marcus and J.Qiang, LCLS-II SCRF start-to-end simulations as of August 2015 : rep. LCLS-II TN-15-33, Menlo Park, SLAC National Accelerator Lab. (2017).

  116. K. V. Zhukovsky, Moscow Univ. Phys. Bull., 74, No. 3, 308–308 (2018).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Zhukovsky.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, No. 2, pp. 96–127, February 2022. Russian DOI: https://doi.org/10.52452/00213462_2022_65_02_96

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukovsky, K.V. Theoretical Analysis of Radiation Properties of X-Ray Free-Electron Lasers. Radiophys Quantum El 65, 88–117 (2022). https://doi.org/10.1007/s11141-022-10197-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-022-10197-w

Navigation