Skip to main content
Log in

Effect of Gas Reservoir Extending on the Ballistic Characteristics of Single-Stage Compressed Gas Setups

  • GASES AND LIQUIDS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

In this study, we analyzed the effect of the degree of a gas reservoir extending on the output velocity of a body during its acceleration in a barrel by a compressed gas. The simulation was performed using quasi-one-dimensional and two-dimensional axisymmetric gas-dynamic models. Models are validated based on experimental results. The use of a wider reservoir with the same volume and initial pressure is shown to allow increasing the efficiency by 25%. The significant effect of air compression in front of a light projectile under supersonic conditions on its speed is demonstrated. Accounting for air compression in front of the projectile was performed using an approximate formula, which showed good results compared to the two-dimensional model. The effect of accelerating a light projectile due to the expulsion of an air column through the muzzle was revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. N. K. Bourne, J. Dyn. Behav. Mater 2, 33 (2016). https://doi.org/10.1007/s40870-016-0055-5

    Article  Google Scholar 

  2. S. G. Goveas, N. K. Bourne, and J. C. F. Millett, AIP Conf. Proc. 955, 525 (2007). https://doi.org/10.1063/1.2833130

    Article  ADS  Google Scholar 

  3. J. Furmanski, P. Carl, C. P. Trujillo, T. D. Martinez, G. T. Gray III, and E. N. Brown, Polym. Test. 31, 1031 (2012). https://doi.org/10.1016/j.polymertesting.2012.07.011

    Article  Google Scholar 

  4. E. P. Buslov, I. S. Komarov, V. V. Selivanov, V. A. Titov, N. A. Tovarnova, and V. A. Feldstein, Acta Astronaut. 163A, 54 (2019). https://doi.org/10.1016/j.actaastro.2019.04.046

    Article  ADS  Google Scholar 

  5. L. D. Duc, V. Horák, R. Vitek, and V. Kulish, in Proc. Int. Conf. on Military Technologies, Brno, Czech Republic, 2017. https://doi.org/10.1109/MILTECHS.2017.7988720

  6. V. V. Grigor’ev, S. N. Isakov, R. L. Petrov, and S. V. Yurkin, Tech. Phys. 51, 367 (2006). https://doi.org/10.1134/S1063784206030121

    Article  Google Scholar 

  7. S. Thunborg, G. E. Ingram, and R. A. Graham, Rev. Sci. Instrum. 35, 11 (1964). https://doi.org/10.1063/1.1718685

    Article  ADS  Google Scholar 

  8. A. V. Pavlenko, S. I. Balabin, O. E. Kozelkov, and D. N. Kazakov, Instrum. Exp. Tech. 56, 482 (2013). https://doi.org/10.1134/S0020441213040088

    Article  Google Scholar 

  9. N. K. Bourne, Meas. Sci. Technol. 14, 273 (2003). https://doi.org/10.1088/0957-0233/14/3/304

    Article  ADS  Google Scholar 

  10. N. K. Bourne and G. S. Stevens, Rev. Sci. Instrum. 72, 2214 (2001). https://doi.org/10.1063/1.1359192

    Article  ADS  Google Scholar 

  11. N. K. Bourne, Rev. Sci. Instrum. 75, 253 (2004). https://doi.org/10.1063/1.1633988

    Article  ADS  Google Scholar 

  12. A. Johnston and L. V. Krishnamoorthy, Report No. DSTO-TN-080 (Defence Science and Technology Organisation, Edinburgh, 2008).

  13. P. A. Gardiner, Y. Egawa, and K. Watanabe, Mech. Eng. J. 3, 16-00273 (2016). https://doi.org/10.1299/mej.16-00273

    Article  Google Scholar 

  14. L. Krishnamoorthy, M. Stringer, M. R. G. Taylor, and S. Kollias, Proc. SPIE 5615, 54 (2004). https://doi.org/10.1117/12.583143

    Article  ADS  Google Scholar 

  15. G. R. Fowles, G. E. Duvall, J. Asay, P. Bellamy, F. Feistmann, D. Grady, T. Michaels, and R. Mitchell, Rev. Sci. Instrum. 41, 984 (1970). https://doi.org/10.1063/1.1684739

    Article  ADS  Google Scholar 

  16. L. M. Sheppard, in Proc. 5th Australian Conf. on Hydraulics and Fluid Mechanics, Christchurch, New Zealand, 1974, p. 514.

  17. I. M. Hutchings and R. E. Winter, J. Phys. E 8, 84 (1975). https://doi.org/10.1088/0022-3735/8/2/005

    Article  ADS  Google Scholar 

  18. I. M. Hutchings, M. C. Rochester, and J.-J. Camus, J. Phys. E 10, 455 (1977). https://doi.org/10.1088/0022-3735/10/5/012

    Article  ADS  Google Scholar 

  19. Y. Porat and M. Gvishi, J. Phys. E 13, 504 (1980). https://doi.org/10.1088/0022-3735/13/5/009

    Article  ADS  Google Scholar 

  20. A. V. Dubovik, E. T. Velikovskii, V. K. Bobolev, E. K. Russiyan, E. M. Brazhnikov, and N. A. Zemskov, Combust., Explos. Shock Waves 11, 94 (1975). https://doi.org/10.1007/BF00742864

    Article  Google Scholar 

  21. J. R. Brown, P. J. C. Chappell, G. T. Egglestone, and E. P. Gellert, J. Phys. E 22, 771 (1989). https://doi.org/10.1088/0022-3735/22/9/016

    Article  ADS  Google Scholar 

  22. N. V. Bykov, J. Appl. Mech. Tech. Phys. 60, 424 (2019). https://doi.org/10.1134/S0021894419030039

    Article  ADS  MathSciNet  Google Scholar 

  23. N. V. Bykov, Inzh. Zh.: Nauka Innovatsii, No. 2 (2019). https://doi.org/10.18698/2308-6033-2019-2-1852

  24. S. V. Bulovich and R. L. Petrov, Tech. Phys. Lett. 31, 682 (2005). https://doi.org/10.1134/1.2035365

    Article  Google Scholar 

  25. A. Moradi and H. Ahmadikia, Adv. Theor. Appl. Mech. 4, 101 (2011).

    Google Scholar 

  26. A. Moradi and S. Khodadadiyan, Int. J. Mech., Ind. Aerosp. Sci. 5, 991 (2011). https://doi.org/10.5281/zenodo.1331541

    Article  Google Scholar 

  27. Yu. P. Khomenko, A. N. Ishchenko, and V. Z. Kasimov, Mathematical Silmuation of Intraballistic Processes in Barrel Systems (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 1999).

    Google Scholar 

  28. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 5th ed. (Fizmatlit, Moscow, 2006).

    Google Scholar 

Download references

Funding

This work was partially supported by the Russian Foundation for Basic Research, project nos. 16-29-09596_ofi-m and 16-38-00948_mol-a.

Author information

Authors and Affiliations

Authors

Contributions

Two-dimensional calculations using ANSYS Fluent were performed by I. E. Shestakov.

Corresponding author

Correspondence to N. V. Bykov.

Ethics declarations

The authors declare that they do not have any conflicts of interest.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykov, N.V., Shestakov, I.E. Effect of Gas Reservoir Extending on the Ballistic Characteristics of Single-Stage Compressed Gas Setups. Tech. Phys. 65, 347–353 (2020). https://doi.org/10.1134/S1063784220030044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220030044

Navigation