Skip to main content
Log in

Temperature Dependence of the Lattice Thermal Conductivity of Metastable Phases of FCC Ti and Zr

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The metastable phases of a material have other, possibly anomalous properties as compared to its stable structural state. The elastic and dynamic properties of metastable phases with a face-centered cubic (FCC) lattice of highly anharmonic transition metals, Ti and Zr, calculated previously by the molecular dynamics method with many-body potentials, constructed using the embedded-atom method, are in good agreement with previous theoretical calculations. The possibility of using the non-equilibrium molecular dynamics method to calculate the lattice thermal conductivity of metastable FCC structures in both metals is demonstrated. Temperature dependences of the lattice thermal conductivity coefficients of FCC Ti and Zr are obtained for crystallites with a cross section of 12 × 12 FCC unit cells (u.c.) and lengths of 48 and 96 u.c. The results are compared with the previously calculated lattice thermal conductivity of Al, which is consistent with ab initio calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. Schönecker, X. Li, M. Richter, and L. Vitos, Phys. Rev. B 97, 224305 (2018). https://doi.org/10.1103/PhysRevB.97.224305

    Article  ADS  Google Scholar 

  2. S. Schönecker, X. Li, K. Koepermik, B. Johansson, L. Vitos, and M. Richter, RSC Adv. 5, 69680 (2015). https://doi.org/10.1039/C5RA14875H

  3. S. K. Kim, F. Jona, and P. M. Marcus, J. Phys.: Condens. Matter 8, 25 (1996). https://doi.org/10.1088/0953-8984/8/1/005

    Article  ADS  Google Scholar 

  4. D. H. Hong, T. W. Lee, S. H. Limc, W. Y. Kim, and S. K. Hwang, Scr. Mater. 69, 405 (2013). https://doi.org/10.1016/j.scriptamat.2013.05.038

    Article  Google Scholar 

  5. J. Chakraborty, K. Kumar, R. Ranjan, S. Ghosh Chowdhury, and S. R. Singh, Acta Mater. 59, 2615 (2011). https://doi.org/10.1016/j.actamat.2010.12.046

    Article  ADS  Google Scholar 

  6. X. Z. Ji, F. Jona, and P. M. Marcus, Phys. Rev. B 68, 075421 (2003). https://doi.org/10.1103/PhysRevB.68.075421

    Article  ADS  Google Scholar 

  7. G. E. Hill, J. Marklund, J. Martinson, and B. J. Hopkins, Surf. Sci. 24, 435 (1971). https://doi.org/10.1016/0039-6028(71)90273-1

    Article  ADS  Google Scholar 

  8. E. B. Dolgusheva and V. Y. Trubitsin, Phys. Solid State 54, 1652 (2012). https://doi.org/10.1134/S1063783412080094

    Article  ADS  Google Scholar 

  9. X. An, K. An, H. Zhang, X. Ou, S. Ni, and M. Song, J. Mater Sci. 56, 2672 (2021). https://doi.org/10.1007/s10853-020-05387-8

    Article  ADS  Google Scholar 

  10. E. B. Dolgusheva and V. Y. Trubitsin, Comput. Mater. Sci. 84, 23 (2014). https://doi.org/10.1016/j.commatsci.2013.11.051

    Article  Google Scholar 

  11. E. B. Dolgusheva, Comput. Mater. Sci. 155, 55 (2018). https://doi.org/10.1016/j.commatsci.2018.08.033

    Article  Google Scholar 

  12. Y. Chen, C.-L. Fu, K.-M. Ho, and B. N. Harmond, Phys. Rev. B 31, 6775 (1985). https://doi.org/10.1103/PhysRevB.31.6775

    Article  ADS  Google Scholar 

  13. V. Yu. Trubitsin and E. B. Dolgusheva, Phys. Rev. B 76, 024308 (2007). https://doi.org/10.1103/PhysRevB.76.024308

    Article  ADS  Google Scholar 

  14. S. Plimpton, J. Comput. Phys. 117, 1 (1995). https://doi.org/10.1006/JCPH.1995.1039

    Article  ADS  Google Scholar 

  15. P. Wirnsberger, D. Frenkel, and C. Dellago, J. Chem. Phys. 143, 124104 (2015). https://doi.org/10.1063/1.4931597

    Article  ADS  Google Scholar 

  16. F. Müller-Plathe, J. Chem. Phys. 106, 6082 (1997). https://doi.org/10.1063/1.473271

    Article  ADS  Google Scholar 

  17. E. I. Salamatov and E. B. Dolgusheva, Khim. Fiz. Mezosk. 23, 486 (2021). https://doi.org/10.15350/17270529.2021.4.44

    Article  Google Scholar 

  18. H. Sheng, https://sites.google.com/site/eampotentials/Home/ZrAl

  19. R. R. Zope and Y. Mishin, Phys. Rev. B 68, 024102 (2003). https://doi.org/10.1103/PhysRevB.68.024102

    Article  ADS  Google Scholar 

  20. E. B. Dolgusheva and V. Y. Trubitsin, Phys. Solid State 60, 837 (2018). https://doi.org/10.1134/S1063783418050074

    Article  ADS  Google Scholar 

Download references

Funding

The work was carried out using the Uranium cluster of the SCC IMM UB RAS within the framework of the R&D theme of the UdmFRC UB RAS “Theoretical studies of phase states, spectral and kinetic properties of electrons and  phonons in systems with reduced dimension,” no. 121030100005-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Dolgusheva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgusheva, E.B. Temperature Dependence of the Lattice Thermal Conductivity of Metastable Phases of FCC Ti and Zr. Phys. Solid State 64, 489–492 (2022). https://doi.org/10.1134/S1063783422100018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783422100018

Keywords:

Navigation