Skip to main content
Log in

Exciton Spectroscopy of Semiconductors by the Method of Optical Harmonics Generation (Review)

  • Reviews
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Nonlinear optical phenomena are widely used for the study of semiconductor materials. The paper presents an overview of experimental and theoretical studies of excitons by the method of optical second and third harmonics generation in various bulk semiconductors (GaAs, CdTe, ZnSe, ZnO, Cu2O, (Cd,Mn)Te, EuTe, EuSe), and low-dimensional heterostructures ZnSe/BeTe. Particular attention is paid to the role of external electric and magnetic fields that modify the exciton states and induce new mechanisms of optical harmonics generation. Microscopic mechanisms of harmonics generation based on the Stark effect, the spin and orbital Zeeman effects, and on the magneto-Stark effect specific for excitons moving in an external magnetic field are considered. This approach makes it possible to study the properties of excitons and to obtain new information on their energy and spin structure that is not available when the excitons are investigated by linear optical spectroscopy. As a result of these studies, a large amount of information was obtained, which allows us to conclude on the establishing of a new field of research—exciton spectroscopy by the method of optical harmonics generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Frenkel, Phys. Rev. 37, 1276 (1931).

    Article  ADS  Google Scholar 

  2. Ya. I. Frenkel’, Zh. Eksp. Teor. Fiz. 6, 647 (1936).

    Google Scholar 

  3. G. H. Wannier, Phys. Rev. 52, 191 (1937).

    Article  ADS  Google Scholar 

  4. N. F. Mott, Trans. Faraday Soc. 34, 500 (1938).

    Article  Google Scholar 

  5. E. F. Gross and N. A. Karryev, Dokl. Akad. Nauk SSSR 84, 471 (1952).

    Google Scholar 

  6. E. F. Gross, N. A. Karryev, and Ya. I. Frenkel’, USSR State Register of Discoveries No. 105(1971).

  7. E. F. Gross, Sov. Phys. Usp. 5, 195 (1962).

    Article  ADS  Google Scholar 

  8. R. Knox, Theory of Excitons (Academic, New York, 1963; Mir, Moscow, 1966).

    MATH  Google Scholar 

  9. D. C. Reynolds and T. C. Collins, Excitons: Their Properties and Uses (Academic, New York, 1981).

    Google Scholar 

  10. Excitons, Ed. by E. I. Rashba and M. D. Sturge (Elsevier, Amsterdam, 1987).

  11. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1996).

    Book  MATH  Google Scholar 

  12. C. Klingshirn, Semiconductor Optics (Springer, Berlin, 2005).

    Book  Google Scholar 

  13. E. L. Ivchenko and G. E. Pikus, Superlattices and Other Heterostructures, Vol. 110 of Springer Ser. Solid-State Sci. (Springer, Berlin, 1997).

    Book  MATH  Google Scholar 

  14. E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science Int., Harrow, UK, 2005).

    Google Scholar 

  15. Spin Physics in Semiconductors, Ed. by M. I. Dyakonov, Vol. 157 of Springer Ser. in Solid-State Sci. (Springer Int., Switzerland, 2017).

  16. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, Berlin, 1996).

    Book  Google Scholar 

  17. D. Fröhlich, in Nonlinear Spectroscopy of Solids: Advances and Applications, Ed. by B. di Bartolo and B. Bowlby (Plemun, New York, 1994), p.289.

  18. V. I. Bredikhin, M. D. Galanin, and V. N. Genkin, Sov. Phys. Usp. 16, 299 (1973).

    Article  ADS  Google Scholar 

  19. S. A. Moskalenko and D. W. Snoke, Bose-Einstein Condensation of Excitons and Biexcitons (Cambridge Univ. Press, Cambridge, 2000).

    Book  Google Scholar 

  20. A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Oxford Univ. Press, Oxford, 2017).

    Book  Google Scholar 

  21. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

    Google Scholar 

  22. R. W. Boyd, Nonlinear Optics (Academic, Elsevier, Burlington, 2008).

    Google Scholar 

  23. J. E. Sipe and A. I. Shkrebtii, Phys. Rev. B 61, 5337 (2000).

    Article  ADS  Google Scholar 

  24. J. L. Cabellos, B. S. Mendoza, M. A. Escobar, F. Nastos, and J. E. Sipe, Phys. Rev. B 80, 155205 (2009).

    Article  ADS  Google Scholar 

  25. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Phys. Rev. Lett. 7, 118 (1961).

    Article  ADS  Google Scholar 

  26. P. D. Maker, R. W. Terhune, and C. M. Savage, in Proceeding of the 3rd International Conference on Quantum Electronics, Paris, France, Ed. by P. Grivet and N. Bloembergen (1963).

  27. M. Fiebig, V. V. Pavlov, and R. V. Pisarev, J. Opt. Soc. Am. B 22, 96 (2005).

    Article  ADS  Google Scholar 

  28. V. V. Pavlov, A. M. Kalashnikova, R. V. Pisarev, I. Sänger, D. R. Yakovlev, and M. Bayer, Phys. Rev. Lett. 94, 157404 (2005).

    Article  ADS  Google Scholar 

  29. V. V. Pavlov, A. M. Kalashnikova, R. V. Pisarev, I. Sänger, D. R. Yakovlev, and M. Bayer, J. Opt. Soc. Am. B 22, 168 (2005).

    Article  ADS  Google Scholar 

  30. I. Sänger, D. R. Yakovlev, B. Kaminski, R. V. Pisarev, V. V. Pavlov, and M. Bayer, Phys. Rev. B 74, 165208 (2006).

    Article  ADS  Google Scholar 

  31. I. Sänger, D. R. Yakovlev, R. V. Pisarev, V. V. Pavlov, M. Bayer, G. Karczewski, T. Wojtowicz, and J. Kossut, Phys. Rev. Lett. 96, 117211 (2006).

    Article  ADS  Google Scholar 

  32. I. Sänger, B. Kaminski, D. R. Yakovlev, R. V. Pisarev, M. Bayer, G. Karczewski, T. Wojtowicz, and J. Kossut, Phys. Rev. B 74, 235217 (2006).

    Article  ADS  Google Scholar 

  33. B. Kaminski, M. Lafrentz, R. V. Pisarev, D. R. Yakovlev, V. V. Pavlov, V. A. Lukoshkin, A. B. Henriques, G. Springholz, G. Bauer, E. Abramof, P. H. O. Rappl, and M. Bayer, Phys. Rev. Lett. 103, 057203 (2009).

    Article  ADS  Google Scholar 

  34. B. Kaminski, M. Lafrentz, R. V. Pisarev, D. R. Yakovlev, V. V. Pavlov, V. A. Lukoshkin, A. B. Henriques, G. Springholz, G. Bauer, E. Abramof, P. H. O. Rappl, and M. Bayer, Phys. Rev. B 81, 155201 (2010).

    Article  ADS  Google Scholar 

  35. R. V. Pisarev, B. Kaminski, M. Lafrentz, V. V. Pavlov, D. R. Yakovlev, and M. Bayer, Phys. Status Solidi B 247, 1498 (2010).

    Article  ADS  Google Scholar 

  36. M. Lafrentz, D. Brunne, B. Kaminski, V. V. Pavlov, A.B. Henriques, R. V. Pisarev, D. R. Yakovlev, G. Springholz, G. Bauer, E. Abramof, P. H. O. Rappl, and M. Bayer, Phys. Rev. B 82, 235206 (2010).

    Article  ADS  Google Scholar 

  37. M. Lafrentz, D. Brunne, B. Kaminski, V. V. Pavlov, R.V. Pisarev, A. B. Henriques, D. R. Yakovlev, G. Springholz, G. Bauer, and M. Bayer, Phys. Rev. B 85, 035206 (2012).

    Article  ADS  Google Scholar 

  38. M. Lafrentz, D. Brunne, B. Kaminski, V. V. Pavlov, A. V. Rodina, R. V. Pisarev, D. R. Yakovlev, A. Bakin, and M. Bayer, Phys. Rev. Lett. 110, 116402 (2013).

    Article  ADS  Google Scholar 

  39. M. Lafrentz, D. Brunne, A. V. Rodina, V. V. Pavlov, R. V. Pisarev, D. R. Yakovlev, A. Bakin, and M. Bayer, Phys. Rev. B 88, 235207 (2013).

    Article  ADS  Google Scholar 

  40. D. Brunne, M. Lafrentz, V. V. Pavlov, R. V. Pisarev, A. V. Rodina, D. R. Yakovlev, and M. Bayer, Phys. Rev. B 92, 085202 (2015).

    Article  ADS  Google Scholar 

  41. D. R. Yakovlev, W. Warkentin, D. Brunne, J. Mund, V. V. Pavlov, A. V. Rodina, R. V. Pisarev, and M. Bayer, in Nonlinear Optics and Applications IX, Ed. by M. Bertolotti, J. W. Haus, and A. M. Zheltikov, Proc. SPIE 9503, 950302 (2015).

    Article  Google Scholar 

  42. R. P. Seisyan and B. P. Zakharchenya, in Landau Level Spectroscopy, Ed. by G. Landwehr and E. I. Rashba (Elsevier, Amsterdam, 1991), Ch.7.

  43. R. P. Seisyan, Spectroscopy of Diamagnetic Exitons (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  44. A. G. Samoilovich and L. L. Korenblit, Dokl. Akad. Nauk SSSR 100, 43 (1955).

    Google Scholar 

  45. D. G. Thomas and J. J. Hopfield, Phys. Rev. Lett. 5, 505 (1960).

    Article  ADS  Google Scholar 

  46. D. G. Thomas and J. J. Hopfield, Phys. Rev. 124, 657 (1961).

    Article  ADS  Google Scholar 

  47. E. F. Gross, B. P. Zakharchenya, and O. V. Konstantinov, Sov. Phys. Solid State 3, 221 (1961).

    Google Scholar 

  48. E. F. Gross and V. F. Agekyan, JETP Lett. 8, 373 (1968).

    ADS  Google Scholar 

  49. Introduction to the Physics of Diluted Magnetic Semiconductors, Vol. 144 of Springer Series in Materials Science, Ed. by J. Kossut and J. A. Gaj (Springer, Heidelberg, 2010).

  50. J. K. Furdyna, J. Appl. Phys. 64, R29 (1988).

    Article  ADS  Google Scholar 

  51. A. V. Platonov, V. P. Kochereshko, E. L. Ivchenko, G. V. Mikhailov, D. R. Yakovlev, M. Keim, W. Ossau, A. Waag, and G. Landwehr, Phys. Rev. Lett. 83, 3546 (1999).

    Article  ADS  Google Scholar 

  52. A. V. Platonov, D. R. Yakovlev, U. Zehnder, V. P. Kochereshko, W. Ossau, F. Fischer, T. Litz, A. Waag, and G. Landwehr, J. Crystal Growth 184–185, 801 (1998).

    Article  Google Scholar 

  53. S. V. Zaitsev, V. D. Kulakovskii, A. A. Maksimov, D. A. Pronin, I. I. Tartakovskii, N. A. Gippius, T. Litts, F. Fisher, A. Vaag, D. R. Yakovlev, V. Ossau, and G. Landver, JETP Lett. 66, 376 (1997).

    Article  ADS  Google Scholar 

  54. A. A. Maksimov, S. V. Zaitsev, I. I. Tartakovskii, V. D. Kulakovskii, D. R. Yakovlev, W. Ossau, F. Fischer, A. Waag, and G. Landwehr, Appl. Phys. Lett. 75, 1231 (1999).

    Article  ADS  Google Scholar 

  55. T. Kazimierczuk, D. Fröhlich, S. Scheel, H. Stolz, and M. Bayer, Nature (London, U.K.) 514, 343 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Pavlov.

Additional information

Original Russian Text © D.R. Yakovlev, V.V. Pavlov, A.V. Rodina, R.V. Pisarev, J. Mund, W. Warkentin, M. Bayer, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 8, pp. 1463–1477.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, D.R., Pavlov, V.V., Rodina, A.V. et al. Exciton Spectroscopy of Semiconductors by the Method of Optical Harmonics Generation (Review). Phys. Solid State 60, 1471–1486 (2018). https://doi.org/10.1134/S1063783418080231

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418080231

Navigation