Skip to main content
Log in

Excitonic devices based on two-dimensional transition metal dichalcogenides van der Waals heterostructures

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Excitonic devices are an emerging class of technology that utilizes excitons as carriers for encoding, transmitting, and storing information. Van der Waals heterostructures based on transition metal dichalcogenides often exhibit a type II band alignment, which facilitates the generation of interlayer excitons. As a bonded pair of electrons and holes in the separation layer, interlayer excitons offer the chance to investigate exciton transport due to their intrinsic out-of-plane dipole moment and extended exciton lifetime. Furthermore, interlayer excitons can potentially analyze other encoding strategies for information processing beyond the conventional utilization of spin and charge. The review provided valuable insights and recommendations for researchers studying interlayer excitonic devices within van der Waals heterostructures based on transition metal dichalcogenides. Firstly, we provide an overview of the essential attributes of transition metal dichalcogenide materials, focusing on their fundamental properties, excitonic effects, and the distinctive features exhibited by interlayer excitons in van der Waals heterostructures. Subsequently, this discourse emphasizes the recent advancements in interlayer excitonic devices founded on van der Waals heterostructures, with specific attention is given to the utilization of valley electronics for information processing, employing the valley index. In conclusion, this paper examines the potential and current challenges associated with excitonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Song Y, Jia C, Xiong H, Wang B, Jiang Z, Huang K, Hwang J, Li Z, Hwang C, Liu Z, et al. Signatures of the exciton gas phase and its condensation in monolayer 1T-ZrTe2. Nature Communications, 2023, 14(1): 1116

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  2. Tagarelli F, Lopriore E, Erkensten D, Perea-Causín R, Brem S, Hagel J, Sun Z, Pasquale G, Watanabe K, Taniguchi T, et al. Electrical control of hybrid exciton transport in a van der Waals heterostructure. Nature Photonics, 2023, 17(7): 615–621

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  3. Datta B, Khatoniar M, Deshmukh P, Thouin F, Bushati R, De Liberato S, Cohen S K, Menon V M. Highly nonlinear dipolar exciton-polaritons in bilayer MoS2. Nature Communications, 2022, 13(1): 6341

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  4. Zhang Z, Regan E C, Wang D, Zhao W, Wang S, Sayyad M, Yumigeta K, Watanabe K, Taniguchi T, Tongay S, et al. Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and Moiré WS2/WSe2. Nature Physics, 2022, 18(10): 1214–1220

    Article  CAS  ADS  Google Scholar 

  5. Erkensten D, Brem S, Perea-Causin R, Malic E. Microscopic origin of anomalous interlayer exciton transport in van der Waals heterostructures. Physical Review Materials, 2022, 6(9): 094006

    Article  CAS  ADS  Google Scholar 

  6. Yuan H, Liu Z, Xu G, Zhou B, Wu S, Dumcenco D, Yan K, Zhang Y, Mo S K, Dudin P, et al. Evolution of the valley position in bulk transition-metal chalcogenides and their monolayer limit. Nano Letters, 2016, 16(8): 4738–4745

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z, Schmitt F, Lee J, Moore R, Chen Y, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nature Nanotechnology, 2014, 9(2): 111–115

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Li Q, Song J H, Xu F, van de Groep J, Hong J, Daus A, Lee Y J, Johnson A C, Pop E, Liu F, et al. A purcell-enabled monolayer semiconductor free-space optical modulator. Nature Photonics, 2023, 17(10): 897–903

    Article  ADS  Google Scholar 

  9. Zhang Q, Sun H, Tang J, Dai X, Wang Z, Ning C Z. Prolonging valley polarization lifetime through gate-controlled exciton-to-trion conversion in monolayer molybdenum ditelluride. Nature Communications, 2022, 13(1): 4101

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  10. Chen Y S, Chiu S K, Tsai D L, Liu C Y, Ting H A, Yao Y C, Son H, Haider G, Kalbáč M, Ting C C, et al. Mediator-assisted synthesis of WS2 with ultrahigh-optoelectronic performance at multi-wafer scale. npj 2D Materials and Applications, 2022, 6(1): 1–8

    Article  CAS  Google Scholar 

  11. Xiao J, Zhang Y, Chen H, Xu N, Deng S. Enhanced performance of a monolayer MoS2/WSe2 heterojunction as a photoelectrochemical cathode. Nano-Micro Letters, 2018, 10(4): 60

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  12. Jiang Y, Wang R, Li X, Ma Z, Li L, Su J, Yan Y, Song X, Xia C. Photovoltaic field-effect photodiodes based on double van der Waals heterojunctions. ACS Nano, 2021, 15(9): 14295–14304

    Article  CAS  PubMed  Google Scholar 

  13. Yu X, Zhao G, Liu C, Wu C, Huang H, He J, Zhang N A. MoS2 and Graphene alternately stacking van der Waals heterostructure for Li+/Mg2+ co-intercalation. Advanced Functional Materials, 2021, 31(42): 2103214

    Article  CAS  Google Scholar 

  14. Liu X, Wang W, Yang F, Feng S, Hu Z, Lu J, Ni Z. Bi2O2Se/BP van der Waals heterojunction for high performance broadband photodetector. Science China. Information Sciences, 2021, 64(4): 140404

    Article  Google Scholar 

  15. Wu Y, Chen X, Cao J, Zhu Y, Yuan W, Hu Z, Ao Z, Brudvig G W, Tian F, Yu J C, et al. Photocatalytically recovering hydrogen energy from wastewater treatment using MoS2@TiO2 with sulfur/oxygen dual-defect. Applied Catalysis B: Environmental, 2022, 303(4): 120878

    Article  CAS  Google Scholar 

  16. Zeng Y, Dai W, Ma R, Li Z, Ou Z, Wang C, Yu Y, Zhu T, Liu X, Wang T, et al. Distinguishing ultrafast energy transfer in atomically thin MoS2/WS2 heterostructures. Small, 2022, 18(44): 2204317

    Article  CAS  Google Scholar 

  17. Zhou Y, Garoufalis C S, Baskoutas S, Zeng Z, Jia Y. Twisting enabled charge transfer excitons in epitaxially fused quantum dot molecules. Nano Letters, 2022, 22(12): 4912–4918

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Hu Z, Liu X, Hernandez-Martinez P L, Zhang S, Gu P, Du W, Xu W, Demir H V, Liu H, Xiong Q. Interfacial charge and energy transfer in van der Waals heterojunctions. InfoMat, 2022, 4(3): e12290

    Article  CAS  Google Scholar 

  19. Kiemle J, Sigger F, Lorke M, Miller B, Watanabe K, Taniguchi T, Holleitner A, Wurstbauer U. Control of the orbital character of indirect excitons in MoS2/WS2 heterobilayers. Physical Review. B, 2020, 101(12): 121404

    Article  CAS  ADS  Google Scholar 

  20. Kim H, Aino K, Shinokita K, Zhang W, Watanabe K, Taniguchi T, Matsuda K. Dynamics of Moiré exciton in a twisted MoSe2/WSe2 heterobilayer. Advanced Optical Materials, 2023, 11(14): 2300146

    Article  CAS  Google Scholar 

  21. Tan Q, Rasmita A, Li S, Liu S, Huang Z, Xiong Q, Yang S A, Novoselov K S, Gao W. Layer-engineered interlayer excitons. Science Advances, 2021, 7(30): eabh0863

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Kim J, Jin C, Chen B, Cai H, Zhao T, Lee P, Kahn S, Watanabe K, Taniguchi T, Tongay S, et al. Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Science Advances, 2017, 3(7): e1700518

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  23. Jiang C, Xu W, Rasmita A, Huang Z, Li K, Xiong Q, Gao W. Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures. Nature Communications, 2018, 9(1): 753

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  24. Shanks D N, Mahdikhanysarvejahany F, Stanfill T G, Koehler M R, Mandrus D G, Taniguchi T, Watanabe K, LeRoy B J, Schaibley J R. Interlayer exciton diode and transistor. Nano Letters, 2022, 22(16): 6599–6605

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Tang Y, Gu J, Liu S, Watanabe K, Taniguchi T, Hone J, Mak K F, Shan J. Tuning layer-hybridized Moiré excitons by the quantum-confined Stark effect. Nature Nanotechnology, 2021, 16(1): 52–57

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Meng Y, Wang T, Jin C, Li Z, Miao S, Lian Z, Taniguchi T, Watanabe K, Song F, Shi S F. Electrical switching between exciton dissociation to exciton funneling in MoSe2/WS2 heterostructure. Nature Communications, 2020, 11(1): 2640

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Joe A Y, Jauregui L A, Pistunova K, Mier Valdivia A M, Lu Z, Wild D S, Scuri G, De Greve K, Gelly R J, Zhou Y, et al. Electrically controlled emission from singlet and triplet exciton species in atomically thin light-emitting diodes. Physical Review. B, 2021, 103(16): L161411

    Article  CAS  ADS  Google Scholar 

  28. Hagel J, Brem S, Malic E. Electrical tuning of Moiré excitons in MoSe2 bilayers. 2D Materials, 2022, 10(1): 014013

    Article  Google Scholar 

  29. Erkensten D, Brem S, Perea-Causín R, Hagel J, Tagarelli F, Lopriore E, Kis A, Malic E. Electrically tunable dipolar interactions between layer-hybridized excitons. Nanoscale, 2023, 15(26): 11064–11071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nagler P, Plechinger G, Ballottin M V, Mitioglu A, Meier S, Paradiso N, Strunk C, Chernikov A, Christianen P C M, Schüller C, et al. Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure. 2D Materials, 2017, 4(2): 025112

    Article  Google Scholar 

  31. Karni O, Barré E, Lau S C, Gillen R, Ma E Y, Kim B, Watanabe K, Taniguchi T, Maultzsch J, Barmak K, et al. Infrared interlayer exciton emission in MoS2/WSe2 heterostructures. Physical Review Letters, 2019, 123(24): 247402

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Rivera P, Yu H, Seyler K L, Wilson N P, Yao W, Xu X. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nature Nanotechnology, 2018, 13(11): 1004–1015

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Jauregui L A, Joe A Y, Pistunova K, Wild D S, High A A, Zhou Y, Scuri G, De Greve K, Sushko A, Yu C H, et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science, 2019, 366(6467): 870–875

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Kamban H C, Pedersen T G. Interlayer excitons in van der Waals heterostructures: binding energy, stark shift, and field-induced dissociation. Scientific Reports, 2020, 10(1): 5537

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Merkl P, Mooshammer F, Steinleitner P, Girnghuber A, Lin K Q, Nagler P, Holler J, Schueller C, Lupton J M, Korn T, et al. Ultrafast transition between exciton phases in van der Waals heterostructures. Nature Materials, 2019, 18(7): 691–696

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Dong X Y, Li R Z, Deng J P, Wang Z W. Interlayer exciton-polaron effect in transition metal dichalcogenides van der Waals heterostructures. Journal of Physics and Chemistry of Solids, 2019, 134(1): 1–4

    Article  CAS  ADS  Google Scholar 

  37. Ponomarev E, Ubrig N, Gutiérrez-Lezama I, Berger H, Morpurgo A F. Semiconducting van der Waals interfaces as artificial semiconductors. Nano Letters, 2018, 18(8): 5146–5152

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Brotons-Gisbert M, Baek H, Campbell A, Watanabe K, Taniguchi T, Gerardot B D. Moiré-trapped interlayer trions in a charge-tunable WSe2/MoSe2 heterobilayer. Physical Review X, 2021, 11(3): 031033

    Article  CAS  ADS  Google Scholar 

  39. Brotons-Gisbert M, Baek H, Molina-Sánchez A, Campbell A, Scerri E, White D, Watanabe K, Taniguchi T, Bonato C, Gerardot B D. Spin-layer locking of interlayer excitons trapped in Moiré potentials. Nature Materials, 2020, 19(6): 630–636

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Yu H, Liu G B, Tang J, Xu X, Yao W. Moiré excitons: from programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. Science Advances, 2017, 3(11): e1701696

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  41. Rasmussen F A, Thygesen K S. Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. Journal of Physical Chemistry C, 2015, 119(23): 13169–13183

    Article  CAS  Google Scholar 

  42. Yin X, Tang C S, Zheng Y, Gao J, Wu J, Zhang H, Chhowalla M, Chen W, Wee A T S. Recent developments in 2D transition metal dichalcogenides: phase transition and applications of the (quasi-)metallic phases. Chemical Society Reviews, 2021, 50(18): 10087–10115

    Article  CAS  PubMed  Google Scholar 

  43. Li Y, Su L, Lu Y, Luo Q, Liang P, Shu H, Chen X. High-throughput screening of phase-engineered atomically thin transition-metal dichalcogenides for van der Waals contacts at the schottky-mott limit. InfoMat, 2023, 5(7): e12407

    Article  CAS  Google Scholar 

  44. Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A. 2D transition metal dichalcogenides. Nature Reviews. Materials, 2017, 2(8): 17033

    Article  CAS  ADS  Google Scholar 

  45. Mak K F, Lee C, Hone J, Shan J, Heinz T F. Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters, 2010, 105(13): 136805

    Article  PubMed  ADS  Google Scholar 

  46. Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F. Emerging photoluminescence in monolayer MoS2. Nano Letters, 2010, 10(4): 1271–1275

    Article  CAS  PubMed  ADS  Google Scholar 

  47. Xiao D, Liu G B, Feng W, Xu X, Yao W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Physical Review Letters, 2012, 108(19): 196802

    Article  PubMed  ADS  Google Scholar 

  48. Mak K F, He K, Shan J, Heinz T F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotechnology, 2012, 7(8): 494–498

    Article  CAS  PubMed  ADS  Google Scholar 

  49. Koperski M, Molas M R, Arora A, Nogajewski K, Bartos M, Wyzula J, Vaclavkova D, Kossacki P, Potemski M. Orbital, spin and valley contributions to zeeman splitting of excitonic resonances in MoSe2, WSe2 and WS2 monolayers. 2D Materials, 2018, 6(1): 015001

    Article  Google Scholar 

  50. Zhang X X, You Y, Zhao S Y F, Heinz T F. Experimental evidence for dark excitons in monolayer WSe2. Physical Review Letters, 2015, 115(25): 257403

    Article  PubMed  ADS  Google Scholar 

  51. Ye Z, Cao T, O’Brien K, Zhu H, Yin X, Wang Y, Louie S G, Zhang X. Probing excitonic dark states in single-layer tungsten disulphide. Nature, 2014, 513(7517): 214–218

    Article  CAS  PubMed  ADS  Google Scholar 

  52. Molas M R, Faugeras C, Slobodeniuk A O, Nogajewski K, Bartos M, Basko D M, Potemski M. Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides. 2D Materials, 2017, 4(2): 021003

    Article  Google Scholar 

  53. Arora A, Nogajewski K, Molas M, Koperski M, Potemski M. Exciton band structure in layered MoSe2: from a monolayer to the bulk limit. Nanoscale, 2015, 7(48): 20769–20775

    Article  CAS  PubMed  ADS  Google Scholar 

  54. Hao K, Shreiner R, Kindseth A, High A A. Optically controllable magnetism in atomically thin semiconductors. Science Advances, 2022, 8(39): eabq7650

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  55. Li Z, Xiao Y, Gong Y, Wang Z, Kang Y, Zu S, Ajayan P M, Nordlander P, Fang Z. Active light control of the MoS2 monolayer exciton binding energy. ACS Nano, 2015, 9(10): 10158–10164

    Article  CAS  PubMed  Google Scholar 

  56. Chernikov A, Berkelbach T C, Hill H M, Rigosi A, Li Y, Aslan B, Reichman D R, Hybertsen M S, Heinz T F. Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2. Physical Review Letters, 2014, 113(7): 076802

    Article  CAS  PubMed  ADS  Google Scholar 

  57. Sie E J, McIver J W, Lee Y H, Fu L, Kong J, Gedik N. Valley-selective optical stark effect in monolayer WS2. Nature Materials, 2015, 14(3): 290–294

    Article  CAS  PubMed  ADS  Google Scholar 

  58. Shreiner R, Hao K, Butcher A, High A A. Electrically controllable chirality in a nanophotonic interface with a two-dimensional semiconductor. Nature Photonics, 2022, 16(4): 330–336

    Article  CAS  ADS  Google Scholar 

  59. Aivazian G, Gong Z, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C, Cobden D, Yao W, Xu X. Magnetic control of valley pseudospin in monolayer WSe2. Nature Physics, 2015, 11(2): 148–152

    Article  CAS  ADS  Google Scholar 

  60. Zeng H, Dai J, Yao W, Xiao D, Cui X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotechnology, 2012, 7(8): 490–493

    Article  CAS  PubMed  ADS  Google Scholar 

  61. Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B, et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Communications, 2012, 3(1): 887

    Article  PubMed  ADS  Google Scholar 

  62. Jones A M, Yu H, Ghimire N J, Wu S, Aivazian G, Ross J S, Zhao B, Yan J, Mandrus D G, Xiao D, et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nature Nanotechnology, 2013, 8(9): 634–638

    Article  CAS  PubMed  ADS  Google Scholar 

  63. Mujeeb F, Chakrabarti P, Mahamiya V, Shukla A, Dhar S. Influence of defects on the valley polarization properties of monolayer MoS2 grown by chemical vapor deposition. Physical Review. B, 2023, 107(11): 115429

    Article  CAS  ADS  Google Scholar 

  64. Mai C, Barrette A, Yu Y, Semenov Y G, Kim K W, Cao L, Gundogdu K. Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. Nano Letters, 2014, 14(1): 202–206

    Article  CAS  PubMed  ADS  Google Scholar 

  65. Sie E J, Lui C H, Lee Y H, Fu L, Kong J, Gedik N. Large, valley-exclusive bloch-siegert shift in monolayer WS2. Science, 2017, 355(6329): 1066–1069

    Article  CAS  PubMed  ADS  Google Scholar 

  66. Scuri G, Andersen T I, Zhou Y, Wild D S, Sung J, Gelly R J, Bérubé D, Heo H, Shao L, Joe A Y, et al. Electrically tunable valley dynamics in twisted WSe2/WSe2 bilayers. Physical Review Letters, 2020, 124(21): 217403

    Article  CAS  PubMed  ADS  Google Scholar 

  67. Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A, Imamoğlu A. Valley zeeman effect in elementary optical excitations of monolayer WSe2. Nature Physics, 2015, 11(2): 141–147

    Article  CAS  ADS  Google Scholar 

  68. Arora A, Deilmann T, Marauhn P, Drüppel M, Schneider R, Molas M R, Vaclavkova D, Vasconcellos S. Valley-contrasting optics of interlayer excitons in Mo- and W-based bulk transition metal dichalcogenides. Nanoscale, 2018, 10(33): 15571–15577

    Article  CAS  PubMed  Google Scholar 

  69. Fortin-Deschenes M, Watanabe K, Taniguchi T, Xia F. Van der Waals epitaxy of tunable Moiré enabled by alloying. Nature Materials, 2023, 22(10): 1–8

    Google Scholar 

  70. Conti S, Chaves A, Pandey T, Covaci L, Peeters F M, Neilson D, Milosevic M V. Flattening conduction and valence bands for interlayer excitons in a Moiré MoS2/WSe2 heterobilayer. Nanoscale, 2023, 15(34): 14032–14042

    Article  CAS  PubMed  Google Scholar 

  71. Ge C, Zhang D, Xiao F, Zhao H, He M, Huang L, Hou S, Tong Q, Pan A, Wang X. Observation and modulation of high-temperature Moiré-locale excitons in van der Waals heterobilayers. ACS Nano, 2023, 17(16): 16115–16122

    Article  CAS  PubMed  Google Scholar 

  72. Li F, Wang Y, Liang Y, Dai Y, Huang B, Wei W. Direct formation of interlayer excitons in MoSSe/WSSe van der Waals heterobilayer. Journal of Physics Condensed Matter, 2023, 35(30): 304005

    Article  Google Scholar 

  73. Lim S Y, Kim H G, Choi Y W, Taniguchi T, Watanabe K, Choi H J, Cheong H. Modulation of phonons and excitons due to Moiré potentials in twisted bilayer of WSe2/MoSe2. ACS Nano, 2023, 17(14): 13938–13947

    Article  CAS  PubMed  Google Scholar 

  74. Louca C, Genco A, Chiavazzo S, Lyons T P, Randerson S, Trovatello C, Claronino P, Jayaprakash R, Hu X, Howarth J, et al. Interspecies exciton interactions lead to enhanced nonlinearity of dipolar excitons and polaritons in MoS2 homobilayers. Nature Communications, 2023, 14(1): 3818

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  75. Özçelik V O, Azadani J G, Yang C, Koester S J, Low T. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Physical Review. B, 2016, 94(3): 035125

    Article  ADS  Google Scholar 

  76. Kim Y S, Kang S, So J P, Kim J C, Kim K, Yang S, Jung Y, Shin Y, Lee S, Lee D, et al. Atomic-layer-confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides. Science Advances, 2021, 7(13): eabd7921

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  77. Zhang C, Gong C, Nie Y, Min K-A, Liang C, Oh Y J, Zhang H, Wang W, Hong S, Colombo L, et al. Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in van der Waals heterostructures. 2D Materials, 2016, 4(1): 015026

    Article  Google Scholar 

  78. Xu K, Xu Y, Zhang H, Peng B, Shao H, Ni G, Li J, Yao M, Lu H, Zhu H, et al. The role of Anderson’s rule in determining electronic, optical and transport properties of transition metal dichalcogenide heterostructures. Physical Chemistry Chemical Physics, 2018, 20(48): 30351–30364

    Article  CAS  PubMed  Google Scholar 

  79. Guo Y, Robertson J. Band engineering in transition metal dichalcogenides: stacked versus lateral heterostructures. Applied Physics Letters, 2016, 108(23): 233104

    Article  ADS  Google Scholar 

  80. Wilson N R, Nguyen P V, Seyler K, Rivera P, Marsden A J, Laker Z P L, Constantinescu G C, Kandyba V, Barinov A, Hine N D M, et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Science Advances, 2017, 3(2): e1601832

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  81. Chiu M H, Zhang C, Shiu H W, Chuu C P, Chen C H, Chang C Y S, Chen C H, Chou M Y, Shih C K, Li L J. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nature Communications, 2015, 6(1): 7666

    Article  CAS  PubMed  ADS  Google Scholar 

  82. Zeng H, Liu X, Zhang H, Cheng X. New theoretical insights into the photoinduced carrier transfer dynamics in WS2/WSe2 van der Waals heterostructures. Physical Chemistry Chemical Physics, 2021, 23(1): 694–701

    Article  PubMed  Google Scholar 

  83. Wu L, Cong C, Shang J, Yang W, Chen Y, Zhou J, Ai W, Wang Y, Feng S, Zhang H, et al. Raman scattering investigation of twisted WS2/MoS2 heterostructures: interlayer mechanical coupling versus charge transfer. Nano Research, 2021, 14(7): 2215–2223

    Article  CAS  ADS  Google Scholar 

  84. Zheng T, Lin Y C, Rafizadeh N, Geohegan D B, Ni Z, Xiao K, Zhao H. Janus monolayers for ultrafast and directional charge transfer in transition metal dichalcogenide heterostructures. ACS Nano, 2022, 16(3): 4197–4205

    Article  CAS  PubMed  Google Scholar 

  85. Kafle T R, Kattel B, Lane S D, Wang T, Zhao H, Chan W L. Charge transfer exciton and spin flipping at organic transition-metal dichalcogenide interfaces. ACS Nano, 2017, 11(10): 10184–10192

    Article  CAS  PubMed  Google Scholar 

  86. Froehlicher G, Lorchat E, Berciaud S. Charge versus energy transfer in atomically thin graphene-transition metal dichalcogenide van der Waals heterostructures. Physical Review X, 2018, 8(1): 011007

    Article  CAS  ADS  Google Scholar 

  87. Policht V R, Russo M, Liu F, Trovatello C, Maiuri M, Bai Y, Zhu X, Dal Conte S, Cerullo G. Dissecting interlayer hole and electron transfer in transition metal dichalcogenide heterostructures via two-dimensional electronic spectroscopy. Nano Letters, 2021, 21(11): 4738–4743

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  88. Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y, Wang F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nature Nanotechnology, 2014, 9(9): 682–686

    Article  CAS  PubMed  ADS  Google Scholar 

  89. Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, et al. Evidence for Moiré excitons in van der waals heterostructures. Nature, 2019, 567(7746): 71–75

    Article  CAS  PubMed  ADS  Google Scholar 

  90. Liu E, Barré E, van Baren J, Wilson M, Taniguchi T, Watanabe K, Cui Y T, Gabor N M, Heinz T F, Chang Y C, Lui C H. Signatures of Moiré trions in WSe2/MoSe2 heterobilayers. Nature, 2021, 594(7861): 46–50

    Article  CAS  PubMed  ADS  Google Scholar 

  91. Rivera P, Schaibley J R, Jones A M, Ross J S, Wu S, Aivazian G, Klement P, Seyler K, Clark G, Ghimire N J, et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nature Communications, 2015, 6(1): 6242

    Article  CAS  PubMed  ADS  Google Scholar 

  92. Baranowski M, Surrente A, Klopotowski L, Urban J M, Zhang N, Maude D K, Wiwatowski K, Mackowski S, Kung Y C, Dumcenco D, et al. Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der Waals heterostructure. Nano Letters, 2017, 17(10): 6360–6365

    Article  CAS  PubMed  ADS  Google Scholar 

  93. Shinokita K, Watanabe K, Taniguchi T, Matsuda K. Valley relaxation of the Moiré excitons in a WSe2/MoSe2 heterobilayer. ACS Nano, 2022, 16(10): 16862–16868

    Article  CAS  PubMed  Google Scholar 

  94. Li W, Lu X, Wu J, Srivastava A. Optical control of the valley zeeman effect through many-exciton interactions. Nature Nanotechnology, 2021, 16(2): 148–152

    Article  CAS  PubMed  ADS  Google Scholar 

  95. Alexeev E M, Catanzaro A, Skrypka O V, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I, Novoselov K S, Shin H S, et al. Imaging of interlayer coupling in van der waals heterostructures using a bright-field optical microscope. Nano Letters, 2017, 17(9): 5342–5349

    Article  CAS  PubMed  ADS  Google Scholar 

  96. Luong D H, Lee H S, Neupane G P, Roy S, Ghimire G, Lee J H, Vu Q A, Lee Y H. Tunneling photocurrent assisted by interlayer excitons in staggered van der Waals hetero-bilayers. Advanced Materials, 2017, 29(33): 1701512

    Article  Google Scholar 

  97. Sun Z, Ciarrocchi A, Tagarelli F, Gonzalez Marin J F, Watanabe K, Taniguchi T, Kis A. Excitonic transport driven by repulsive dipolar interaction in a van der Waals heterostructure. Nature Photonics, 2022, 16(1): 79–85

    Article  CAS  PubMed  ADS  Google Scholar 

  98. Schwartz I, Shimazaki Y, Kuhlenkamp C, Watanabe K, Taniguchi T, Kroner M, Imamoglu A. Electrically tunable feshbach resonances in twisted bilayer semiconductors. Science, 2021, 374(6565): 336–340

    Article  CAS  PubMed  ADS  Google Scholar 

  99. Kezerashvili R Ya, Spiridonova A. Magnetoexcitons in transition metal dichalcogenides monolayers, bilayers, and van der Waals heterostructures. Physical Review Research, 2021, 3(3): 033078

    Article  CAS  ADS  Google Scholar 

  100. Latini S, Winther K T, Olsen T, Thygesen K S. Interlayer excitons and band alignment in MoS2/hBN/WSe2 van der Waals heterostructures. Nano Letters, 2017, 17(2): 938–945

    Article  CAS  PubMed  ADS  Google Scholar 

  101. Zhou H, Zhao Y, Tao W, Li Y, Zhou Q, Zhu H. Controlling exciton and valley dynamics in two-dimensional heterostructures with atomically precise interlayer proximity. ACS Nano, 2020, 14(4): 4618–4625

    Article  CAS  PubMed  Google Scholar 

  102. Shimazaki Y, Schwartz I, Watanabe K, Taniguchi T, Kroner M, Imamoğlu A. Strongly correlated electrons and hybrid excitons in a Moiré heterostructure. Nature, 2020, 580(7804): 472–477

    Article  CAS  PubMed  ADS  Google Scholar 

  103. Ma L, Nguyen P X, Wang Z, Zeng Y, Watanabe K, Taniguchi T, MacDonald A H, Mak K F, Shan J. Strongly correlated excitonic insulator in atomic double layers. Nature, 2021, 598(7882): 585–589

    Article  CAS  PubMed  ADS  Google Scholar 

  104. Ruiz-Tijerina D A, Fal’Ko V. Interlayer hybridization and Moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Physical Review. B, 2019, 99(12): 125424

    Article  CAS  ADS  Google Scholar 

  105. Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X. Signatures of Moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567(7746): 66–70

    Article  CAS  PubMed  ADS  Google Scholar 

  106. Wu K, Zhong H, Guo Q, Tang J, Zhang J, Qian L, Shi Z, Zhang C, Yuan S, Zhang S, et al. Identification of twist-angle-dependent excitons in WS2/WSe2 heterobilayers. National Science Review, 2022, 9(6): nwab135

    Article  CAS  PubMed  Google Scholar 

  107. Marcellina E, Liu X, Hu Z, Fieramosca A, Huang Y, Du W, Liu S, Zhao J, Watanabe K, Taniguchi T, et al. Evidence for Moiré trions in twisted MoSe2 homobilayers. Nano Letters, 2021, 21(10): 4461–4468

    Article  CAS  PubMed  ADS  Google Scholar 

  108. Sokolowski N, Palai S, Dyksik M, Posmyk K, Baranowski M, Surrente A, Maude D, Carrascoso F, Cakiroglu O, Sanchez E, et al. Twist-angle dependent dehybridization of momentum-indirect excitons in MoSe2/MoS2 heterostructures. 2D Materials, 2023, 10(3): 034003

    Article  Google Scholar 

  109. Yoon Y, Zhang Z, Qi R, Joe A Y, Sailus R, Watanabe K, Taniguchi T, Tongay S, Wang F. Charge transfer dynamics in MoSe2/hBN/WSe2 heterostructures. Nano Letters, 2022, 22(24): 10140–10146

    Article  CAS  PubMed  ADS  Google Scholar 

  110. Bernardi M, Ataca C, Palummo M, Grossman J C. Optical and electronic properties of two-dimensional layered materials. Nanophotonics, 2017, 6(2): 479–493

    Article  Google Scholar 

  111. Zhang X, Tan Q H, Wu J B, Shi W, Tan P H. Review on the raman spectroscopy of different types of layered materials. Nanoscale, 2016, 8(12): 6435–6450

    Article  CAS  PubMed  ADS  Google Scholar 

  112. Gong Y, Lin J, Wang X, Shi G, Lei S, Lin Z, Zou X, Ye G, Vajtai R, Yakobson B I, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Materials, 2014, 13(12): 1135–1142

    Article  CAS  PubMed  ADS  Google Scholar 

  113. Hsu W T, Lu L S, Wu P H, Lee M H, Chen P J, Wu P Y, Chou Y C, Jeng H T, Li L J, Chu M W, et al. Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers. Nature Communications, 2018, 9(1): 1356

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  114. Zhang C, Chuu C P, Ren X, Li M Y, Li L J, Jin C, Chou M Y, Shih C K. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Science Advances, 2017, 3(1): e1601459

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  115. Hong J, Hu Z, Probert M, Li K, Lv D, Yang X, Gu L, Mao N, Feng Q, Xie L, et al. Exploring atomic defects in molybdenum disulphide monolayers. Nature Communications, 2015, 6(1): 6293

    Article  CAS  PubMed  ADS  Google Scholar 

  116. Rhodes D, Chae S H, Ribeiro-Palau R, Hone J. Disorder in van der waals heterostructures of 2D materials. Nature Materials, 2019, 18(6): 541–549

    Article  CAS  PubMed  ADS  Google Scholar 

  117. Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology, 2010, 5(10): 722–726

    Article  CAS  PubMed  ADS  Google Scholar 

  118. Pizzocchero F, Gammelgaard L, Jessen B S, Caridad J M, Wang L, Hone J, Boggild P, Booth T J. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nature Communications, 2016, 7(1): 1–10

    Article  Google Scholar 

  119. Kretinin A V, Cao Y, Tu J S, Yu G L, Jalil R, Novoselov K S, Haigh S J, Gholinia A, Mishchenko A, Lozada M, et al. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Letters, 2014, 14(6): 3270–3276

    Article  CAS  PubMed  ADS  Google Scholar 

  120. Lui C H, Ye Z, Ji C, Chiu K C, Chou C T, Andersen T I, Means-Shively C, Anderson H, Wu J M, Kidd T, et al. Observation of interlayer phonon modes in van der Waals heterostructures. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(16): 165403

    Article  ADS  Google Scholar 

  121. Liu F, Wu W, Bai Y, Chae S H, Li Q, Wang J, Hone J, Zhu X Y. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science, 2020, 367(6480): 903–906

    Article  CAS  PubMed  ADS  Google Scholar 

  122. Huang Y, Pan Y H, Yang R, Bao L H, Meng L, Luo H L, Cai Y Q, Liu G D, Zhao W J, Zhou Z, et al. Universal mechanical exfoliation of large-area 2D crystals. Nature Communications, 2020, 11(1): 2453

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  123. Shim J, Bae S H, Kong W, Lee D, Qiao K, Nezich D, Park Y J, Zhao R, Sundaram S, Li X, et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science, 2018, 362(6415): 665–670

    Article  CAS  PubMed  ADS  Google Scholar 

  124. Ciarrocchi A, Tagarelli F, Avsar A, Kis A. Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics. Nature Reviews. Materials, 2022, 7(6): 449–464

    Article  ADS  Google Scholar 

  125. Ciarrocchi A, Unuchek D, Avsar A, Watanabe K, Taniguchi T, Kis A. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nature Photonics, 2019, 13(2): 131–136

    Article  CAS  PubMed  ADS  Google Scholar 

  126. Ripin A, Peng R, Zhang X, Chakravarthi S, He M, Xu X, Fu K M, Cao T, Li M. Tunable phononic coupling in excitonic quantum emitters. Nature Nanotechnology, 2023, 18(6): 1020–1026

    Article  CAS  PubMed  ADS  Google Scholar 

  127. Chen Y, Liu Z, Li J, Cheng X, Ma J, Wang H, Li D. Robust interlayer coupling in two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(8): 10258–10264

    Article  CAS  PubMed  Google Scholar 

  128. Kremser M, Brotons-Gisbert M, Knörzer J, Gückelhorn J, Meyer M, Barbone M, Stier A V, Gerardot B D, Müller K, Finley J J. Discrete interactions between a few interlayer excitons trapped at a MoSe2-WSe2 heterointerface. npj 2D Materials and Applications, 2020, 4(1): 1–6

    Article  Google Scholar 

  129. Sun X, Zhu Y, Qin H, Liu B, Tang Y, Lü T, Rahman S, Yildirim T, Lu Y. Enhanced interactions of interlayer excitons in freestanding heterobilayers. Nature, 2022, 610(7932): 478–484

    Article  CAS  PubMed  ADS  Google Scholar 

  130. Wu F, Lovorn T, MacDonald A H. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Physical Review. B, 2018, 97(3): 035306

    Article  CAS  ADS  Google Scholar 

  131. Yu H, Wang Y, Tong Q, Xu X, Yao W. Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Physical Review Letters, 2015, 115(18): 187002

    Article  PubMed  ADS  Google Scholar 

  132. Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I, et al. Resonantly hybridized excitons in Moiré superlattices in van der Waals heterostructures. Nature, 2019, 567(7746): 81–86

    Article  CAS  PubMed  ADS  Google Scholar 

  133. Zhang L, Zhang Z, Wu F, Wang D, Gogna R, Hou S, Watanabe K, Taniguchi T, Kulkarni K, Kuo T, et al. Twist-angle dependence of Moiré excitons in WS2/MoSe2 heterobilayers. Nature Communications, 2020, 11(1): 5888

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  134. Rivera P, Seyler K L, Yu H, Schaibley J R, Yan J, Mandrus D G, Yao W, Xu X. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science, 2016, 351(6274): 688–691

    Article  CAS  PubMed  ADS  Google Scholar 

  135. Förste J, Tepliakov N V, Kruchinin S Y, Lindlau J, Funk V, Förg M, Watanabe K, Taniguchi T, Baimuratov A S, Högele A. Exciton g-factors in monolayer and bilayer WSe2 from experiment and theory. Nature Communications, 2020, 11(1): 4539

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  136. Li Z, Förste J, Watanabe K, Taniguchi T, Urbaszek B, Baimuratov A S, Gerber I C, Högele A, Bilgin I. Stacking-dependent exciton multiplicity in WSe2 bilayers. Physical Review. B, 2022, 106(4): 045411

    Article  CAS  ADS  Google Scholar 

  137. Li Z, Wang T, Miao S, Li Y, Lu Z, Jin C, Lian Z, Meng Y, Blei M, Taniguchi T, et al. Phonon-exciton interactions in WSe2 under a quantizing magnetic field. Nature Communications, 2020, 11(1): 3104

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  138. Liu E, van Baren J, Taniguchi T, Watanabe K, Chang Y C, Lui C H. Landau-quantized excitonic absorption and luminescence in a monolayer valley semiconductor. Physical Review Letters, 2020, 124(9): 097401

    Article  CAS  PubMed  ADS  Google Scholar 

  139. He M, Rivera P, Van Tuan D, Wilson N P, Yang M, Taniguchi T, Watanabe K, Yan J, Mandrus D G, Yu H, et al. Valley phonons and exciton complexes in a monolayer semiconductor. Nature Communications, 2020, 11(1): 618

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  140. Faria P E Junior, Fabian J. Signatures of electric field and layer separation effects on the spin-valley physics of MoSe2/WSe2 heterobilayers: from energy bands to dipolar excitons. Nanomaterials, 2023, 13(7): 1187

    Article  Google Scholar 

  141. Smirnov D S, Holler J, Kempf M, Zipfel J, Nagler P, Ballottin M, Mitioglu A A, Chernikov A, Christianen P C M, Schueller C, et al. Valley-magnetophonon resonance for interlayer excitons. 2D Materials, 2022, 9(4): 045016

    Article  Google Scholar 

  142. Nagler P, Ballottin M V, Mitioglu A A, Mooshammer F, Paradiso N, Strunk C, Huber R, Chernikov A, Christianen P C M, Schüller C, et al. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nature Communications, 2017, 8(1): 1551

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  143. Wang T, Miao S, Li Z, Meng Y, Lu Z, Lian Z, Blei M, Taniguchi T, Watanabe K, Tongay S, et al. Giant valley-zeeman splitting from spin-singlet and spin-triplet interlayer excitons in WSe2/MoSe2 heterostructure. Nano Letters, 2020, 20(1): 694–700

    Article  CAS  PubMed  ADS  Google Scholar 

  144. Baek H, Brotons-Gisbert M, Koong Z X, Campbell A, Rambach M, Watanabe K, Taniguchi T, Gerardot B D. Highly energy-tunable quantum light from Moiré-trapped excitons. Science Advances, 2020, 6(37): eaba8526

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  145. Woźniak T, Faria P E Junior, Seifert G, Chaves A, Kunstmann J. Exciton g factors of van der Waals heterostructures from first-principles calculations. Physical Review. B, 2020, 101(23): 235408

    Article  ADS  Google Scholar 

  146. Li W, Lu X, Dubey S, Devenica L, Srivastava A. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nature Materials, 2020, 19(6): 624–629

    Article  CAS  PubMed  ADS  Google Scholar 

  147. Miller B, Steinhoff A, Pano B, Klein J, Jahnke F, Holleitner A, Wurstbauer U. Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Letters, 2017, 17(9): 5229–5237

    Article  CAS  PubMed  ADS  Google Scholar 

  148. Xia J, Yan J, Wang Z, He Y, Gong Y, Chen W, Sum T C, Liu Z, Ajayan P M, Shen Z. Strong coupling and pressure engineering in WSe2-MoSe2 heterobilayers. Nature Physics, 2021, 17(1): 92–98

    Article  CAS  ADS  Google Scholar 

  149. Moon H, Grosso G, Chakraborty C, Peng C, Taniguchi T, Watanabe K, Englund D. Dynamic exciton funneling by local strain control in a monolayer semiconductor. Nano Letters, 2020, 20(9): 6791–6797

    Article  CAS  PubMed  ADS  Google Scholar 

  150. He Y, Yang Y, Zhang Z, Gong Y, Zhou W, Hu Z, Ye G, Zhang X, Bianco E, Lei S, et al. Strain-induced electronic structure changes in stacked van der Waals heterostructures. Nano Letters, 2016, 16(5): 3314–3320

    Article  CAS  PubMed  ADS  Google Scholar 

  151. Lu X B, Li X Q, Yang L. Modulated interlayer exciton properties in a two-dimensional Moiré crystal. Physical Review. B, 2019, 100(15): 155416

    Article  CAS  ADS  Google Scholar 

  152. Geng W T, Wang V, Liu Y C, Ohno T, Nara J. Moiré potential, lattice corrugation, and band gap spatial variation in a twist-free MoTe2/MoS2 heterobilayer. Journal of Physical Chemistry Letters, 2020, 11(7): 2637–2646

    Article  CAS  PubMed  Google Scholar 

  153. Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, et al. Observation of Moiré excitons in WSe2/WS2 heterostructure superlattices. Nature, 2019, 567(7746): 76–80

    Article  CAS  PubMed  ADS  Google Scholar 

  154. Wu B, Zheng H, Li S, Ding J, He J, Zeng Y, Chen K, Liu Z, Chen S, Pan A, et al. Evidence for Moiré intralayer excitons in twisted WSe2/WSe2 homobilayer superlattices. Light, Science & Applications, 2022, 11(1): 166

    Article  Google Scholar 

  155. Li Z, Lu X, Cordovilla Leon D F, Lyu Z, Xie H, Hou J, Lu Y, Guo X, Kaczmarek A, Taniguchi T, et al. Interlayer exciton transport in MoSe2/WSe2 heterostructures. ACS Nano, 2021, 15(1): 1539–1547

    Article  CAS  PubMed  Google Scholar 

  156. Wang J, Shi Q, Shih E M, Zhou L, Wu W, Bai Y, Rhodes D, Barmak K, Hone J, Dean C R, et al. Diffusivity reveals three distinct phases of interlayer excitons in MoSe2/WSe2 heterobilayers. Physical Review Letters, 2021, 126(10): 106804

    Article  CAS  PubMed  ADS  Google Scholar 

  157. Zhang L, Wu F, Hou S, Zhang Z, Chou Y H, Watanabe K, Taniguchi T, Forrest S R, Deng H. Van der Waals heterostructure polaritons with Moiré-induced nonlinearity. Nature, 2021, 591(7848): 61–65

    Article  CAS  PubMed  ADS  Google Scholar 

  158. Tong Q, Yu H, Zhu Q, Wang Y, Xu X, Yao W. Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nature Physics, 2017, 13(4): 356–362

    Article  CAS  ADS  Google Scholar 

  159. Zhao S, Li Z, Huang X, Rupp A, Göser J, Vovk I A, Kruchinin S Y, Watanabe K, Taniguchi T, Bilgin I, et al. Excitons in mesoscopically reconstructed Moiré heterostructures. Nature Nanotechnology, 2023, 18(6): 572–579

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  160. Wilson N P, Yao W, Shan J, Xu X. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature, 2021, 599(7885): 383–392

    Article  CAS  PubMed  ADS  Google Scholar 

  161. Chen D, Lian Z, Huang X, Su Y, Rashetnia M, Yan L, Blei M, Taniguchi T, Watanabe K, Tongay S, et al. Tuning Moiré excitons and correlated electronic states through layer degree of freedom. Nature Communications, 2022, 13(1): 4810

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  162. Sung J, Zhou Y, Scuri G, Zólyomi V, Andersen T I, Yoo H, Wild D S, Joe A Y, Gelly R J, Heo H, et al. Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nature Nanotechnology, 2020, 15(9): 750–754

    Article  CAS  PubMed  ADS  Google Scholar 

  163. Yu H, Yao W. Luminescence anomaly of dipolar valley excitons in homobilayer semiconductor Moiré superlattices. Physical Review X, 2021, 11(2): 021042

    Article  CAS  ADS  Google Scholar 

  164. Brem S, Lin K Q, Gillen R, Bauer J M, Maultzsch J, Lupton J M, Malic E. Hybridized intervalley Moiré excitons and flat bands in twisted WSe2 bilayers. Nanoscale, 2020, 12(20): 11088–11094

    Article  CAS  PubMed  Google Scholar 

  165. Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, et al. Simulation of hubbard model physics in WSe2/WS2 Moiré superlattices. Nature, 2020, 579(7799): 353–358

    Article  CAS  PubMed  ADS  Google Scholar 

  166. Paik E Y, Zhang L, Burg G W, Gogna R, Tutuc E, Deng H. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature, 2019, 576(7785): 80–84

    Article  CAS  PubMed  ADS  Google Scholar 

  167. Liu Y, Fang H, Rasmita A, Zhou Y, Li J, Yu T, Xiong Q, Zheludev N, Liu J, Gao W. Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Science Advances, 2019, 5(4): eaav4506

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  168. Lin Q, Fang H, Liu Y, Zhang Y, Fischer M, Li J, Hagel J, Brem S, Malic E, Stenger N, et al. A room temperature Moiré interlayer exciton laser. 2023, arXiv: 2302.01266

  169. Unuchek D, Ciarrocchi A, Avsar A, Watanabe K, Taniguchi T, Kis A. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature, 2018, 560(7718): 340–344

    Article  CAS  PubMed  ADS  Google Scholar 

  170. Peng R, Ripin A, Ye Y, Zhu J, Wu C, Lee S, Li H, Taniguchi T, Watanabe K, Cao T, et al. Long-range transport of 2D excitons with acoustic waves. Nature Communications, 2022, 13(1): 1334

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  171. Long M, Liu E, Wang P, Gao A, Xia H, Luo W, Wang B, Zeng J, Fu Y, Xu K, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Letters, 2016, 16(4): 2254–2259

    Article  CAS  PubMed  ADS  Google Scholar 

  172. Lukman S, Ding L, Xu L, Tao Y, Riis-Jensen A C, Zhang G, Wu Q Y S, Yang M, Luo S, Hsu C, et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nature Nanotechnology, 2020, 15(8): 675–682

    Article  CAS  PubMed  ADS  Google Scholar 

  173. Yan J, Yang X, Liu X, Du C, Qin F, Yang M, Zheng Z, Li J. Van der Waals heterostructures with built-in mie resonances for polarization-sensitive photodetection. Advanced Science, 2023, 10(9): 2207022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Schaibley J R, Yu H Y, Clark G, Rivera P, Ross J S, Seyler K L, Yao W, Xu X D. Valleytronics in 2D materials. Nature Reviews. Materials, 2016, 1(11): 16055

    Article  CAS  ADS  Google Scholar 

  175. Lee J, Mak K F, Shan J. Electrical control of the valley hall effect in bilayer MoS2 transistors. Nature Nanotechnology, 2016, 11(5): 421–425

    Article  CAS  PubMed  ADS  Google Scholar 

  176. Ubrig N, Jo S, Philippi M, Costanzo D, Berger H, Kuzmenko A B, Morpurgo A F. Microscopic origin of the valley hall effect in transition metal dichalcogenides revealed by wavelength-dependent mapping. Nano Letters, 2017, 17(9): 5719–5725

    Article  CAS  PubMed  ADS  Google Scholar 

  177. Huang Z, Liu Y, Dini K, Tan Q, Liu Z, Fang H, Liu J, Liew T, Gao W. Robust room temperature valley hall effect of interlayer excitons. Nano Letters, 2020, 20(2): 1345–1351

    Article  CAS  PubMed  ADS  Google Scholar 

  178. Li L, Shao L, Liu X, Gao A, Wang H, Zheng B, Hou G, Shehzad K, Yu L, Miao F, Shi Y, Xu Y, Wang X. Room-temperature valleytronic transistor. Nature Nanotechnology, 2020, 15(9): 743–749

    Article  CAS  PubMed  ADS  Google Scholar 

  179. Jiang C, Rasmita A, Ma H, Tan Q, Zhang Z, Huang Z, Lai S, Wang N, Liu S, Liu X, et al. A room-temperature gate-tunable bipolar valley hall effect in molybdenum disulfide/tungsten diselenide heterostructures. Nature Electronics, 2022, 5(1): 23–27

    Article  CAS  Google Scholar 

  180. Zhang L, Gogna R, Burg G W, Horng J, Paik E, Chou Y H, Kim K, Tutuc E, Deng H. Highly valley-polarized singlet and triplet interlayer excitons in van der Waals heterostructure. Physical Review. B, 2019, 100(4): 041402

    Article  CAS  ADS  Google Scholar 

  181. Ye T, Li Y, Li J, Shen H, Ren J, Ning C Z, Li D. Nonvolatile electrical switching of optical and valleytronic properties of interlayer excitons. Light, Science & Applications, 2022, 11(1): 23

    Article  CAS  Google Scholar 

  182. Hu Y, Wen X, Lin J, Yao W, Chen Y, Li J, Chen S, Wang L, Xu W, Li D. All-optical valley polarization switch via controlling spin-triplet and spin-singlet interlayer exciton emission in WS2/WSe2 heterostructure. Nano Letters, 2023, 23(14): 6581–6587

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFB2803900), National Natural Science Foundation of China (Grant Nos. 61704121, 61974075), the Natural Science Foundation of Tianjin City (Grant Nos. 19JCQNJC00700, 22JCZDJC00460), the Scientific Research Project of Tianjin Municipal Education Commission (Grant No. 2019KJ028), Fundamental Research Funds for the Central Universities of Nankai University (Grant No. 22JCZDJC00460). C.Y.J. acknowledges the Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin and the Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Ma or Chongyun Jiang.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhu, Y., Yan, Z. et al. Excitonic devices based on two-dimensional transition metal dichalcogenides van der Waals heterostructures. Front. Chem. Sci. Eng. 18, 16 (2024). https://doi.org/10.1007/s11705-023-2382-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11705-023-2382-0

Keywords

Navigation