Skip to main content
Log in

Synthesis of hollow carbon nanoshells and their application for supercapacitors

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

This work is devoted to the study of the synthesis, the description of the structure, and the use of hollow carbon nanoshells 3–5 nm in size. Hollow carbon nanoshells were synthesized by thermolysis of a mixture of nickel acetate and citric acid in the temperature range of 500–700°C. During the chemical reaction, nickel nuclei ~3–5 nm in size are formed, separated from each other by carbon layers. At an annealing temperature of 600°C, the most ordered, close-packed structure is formed, evenly distributed throughout the sample. The etching of nickel with nitric acid resulted in hollow carbon nanoshells with a high specific surface area (~1200 m2/g) and a homogeneous structure. Raman spectroscopy shows that the graphene-like structure of carbon nanoshells is preserved before and after the etching of nickel, and their defect density does not increase, which enables them to be subjected to new processing (functionalization) in order to obtain additional physical properties. The resulting carbon nanoshells were used as active material of the supercapacitor electrodes. The conducted electrochemical measurements showed that the specific capacitance of the supercapacitor did not fall below 120 F/g at a current density of 0.3 to 3 A after 800 charge/discharge cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Marsh, E. A. Heintz, and F. Rodriguez-Reinoso, Introduction to Carbon Technology (Univ. Alicante, Alicante, Spain, 1997), p. 672.

    Google Scholar 

  2. C. N. R. Rao, B. C. Satishkumar, A. Govindaraj, and M. Nath, Chem. Phys. Chem. 2, 78 (2001).

    Article  Google Scholar 

  3. H. Dai, Surf. Sci. 500, 218 (2002).

    Article  ADS  Google Scholar 

  4. V. N. Popov, Mater. Sci. Eng. R 43, 61 (2004).

    Article  Google Scholar 

  5. B. El Hamaoui, L. Zhi, J. Wu, U. Kolb, and K. Mullen, Adv. Mater. 17, 2957 (2005).

    Article  Google Scholar 

  6. A. Vinu, M. Miyahara, T. Mori, and K. Ariga, J. Porous Mater. 13, 379 (2006).

    Article  Google Scholar 

  7. M. Hartmann, A. Vinu, and G. Chandrasekar, Chem. Mater. 17, 829 (2005).

    Article  Google Scholar 

  8. A. Vinu, C. Streb, V. Murugesan, and M. Hartmann, J. Phys. Chem. B 107, 8297 (2003).

    Article  Google Scholar 

  9. W. Wang and D. Yuan, Sci. Rep. 4, 5711 (2014).

    Article  ADS  Google Scholar 

  10. J. N. Wang, L. Zhang, J. J. Niu, F. Yu, Z. M. Sheng, Yu. Z. Zhao, H. Chang, and C. Pak, Chem. Mater. 19, 453 (2007).

    Article  Google Scholar 

  11. X. X. Wang, Z. H. Tan, M. Zeng, and J. N. Wang, Sci. Rep. 4, 4437 (2014).

    Article  ADS  Google Scholar 

  12. J. N. Wang, Y. Z. Zhao, and J. J. Niu, J. Mater. Chem. 17, 2251 (2007).

    Article  Google Scholar 

  13. S. C. Smith and D. F. Rodrigues, Carbon 91, 122 (2015).

    Article  Google Scholar 

  14. P. Simon and Y. Gogotsi, Nat. Mater. 7, 845 (2008).

    Article  ADS  Google Scholar 

  15. L. G. H. Staaf, P. Lundgren, and P. Enoksson, Nano Energy 9, 128 (2014).

    Article  Google Scholar 

  16. K. Xie, X. Qin, X. Wang, Y. Wang, H. Tao, Q. Wu, L. Yang, and Z. Hu, Adv. Mater. 24, 347 (2012).

    Article  Google Scholar 

  17. G. Li, L. Xu, Q. Hao, M. Wang, and Y. Qian, RSC Adv. 2, 284 (2012).

    Article  Google Scholar 

  18. J. R. Miller, R. A. Outlaw, and B. C. Holloway, Science 329, 1637 (2010).

    Article  ADS  Google Scholar 

  19. Y. Ma, Z. Hu, K. Huo, Y. Li, Y. Hu, Y. Liu, J. Hu, and Yi Chen, Carbon 43, 1667 (2005).

    Article  Google Scholar 

  20. G. Radhakrishnan, P. M. Adams, and L. S. Bernstein, Thin Solid Films 515, 1142 (2006).

    Article  ADS  Google Scholar 

  21. T. Azami, D. Kasuya, T. Yoshitake, Y. Kubo, M. Yudasaka, T. Ichihashi, and S. Iijima, Carbon 45, 1364 (2007).

    Article  Google Scholar 

  22. A. V. Sosunov and L. V. Spivak, Phys. Solid State 58, 1371 (2016).

    Article  ADS  Google Scholar 

  23. B. Xu, D. Zheng, M. Jia, H. Liu, G. Cao, N. Qiao, Y. Wei, and Y. Yang, Mater. Lett. 143, 159 (2015).

    Article  Google Scholar 

  24. Z. Li, M. Jaroniec, P. Papakonstantinou, J. M. Tobin, U. Vohrer, S. Kumar, G. Attard, and J. D. Holmes, Chem. Mater. 19, 3349 (2007).

    Article  Google Scholar 

  25. B. Xu, J. Guo, X. Wang, X. Liu, and H. Ichinose, Carbon 44, 2631 (2006).

    Article  Google Scholar 

  26. G. Li, H. Yu, L. Xu, Q. Ma, C. Chen, Q. Hao, and Y. Qiana, Nanoscale 3, 3251 (2011).

    Article  ADS  Google Scholar 

  27. S. J. Teng, J. N. Wang, and X. X. Wang, J. Mater. Chem. 21, 5443 (2011).

    Article  Google Scholar 

  28. A. H. Lu, W. C. Li, E. L. Salabas, B. Spliethoff, and F. Schuth, Chem. Mater. 18, 2086 (2006).

    Article  Google Scholar 

  29. M. Zheng, Y. Liu, S. Zhao, W. He, Y. Xiao, and D. Yuan, Inorg. Chem. 49, 8674 (2010).

    Article  Google Scholar 

  30. J. I. Sohn, Y.-Su Kim, C. Nam, B. K. Cho, T. Y. Seong, and S. Lee, Appl. Phys. Lett. 87, 123115 (2005).

    Article  ADS  Google Scholar 

  31. R. Zhao, T. Afaneh, R. Dharmasena, J. Jasinski, G. Sumanasekera, and V. Henner, Phys. B 490, 21 (2016).

    Article  ADS  Google Scholar 

  32. R. Zhao, R. Jayasingha, A. Sherehiy, R. Dharmasena, M. Akhtar, J. B. Jasinski, S.-Y. Wu, V. Henner, and G. U. Sumanasekera, J. Phys. Chem. 119, 20150 (2015).

    Google Scholar 

  33. A. C. Ferrari, Solid State Commun. 143, 47 (2007).

    Article  ADS  Google Scholar 

  34. M. S. Dresselhaus, Ann. Rev. Condens. Matter Phys. 1, 89 (2010).

    Article  ADS  Google Scholar 

  35. S. Reich and C. Thomsen, Phil. Trans. R. Soc. London A 362, 2271 (2004).

    Article  ADS  Google Scholar 

  36. M. A. Pimenta, Phys. Chem. Chem. Phys. 9, 1276 (2007).

    Article  Google Scholar 

  37. R. Podila, ACS Nano 6, 5784 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sosunov.

Additional information

Original Russian Text © G.A. Rudakov, A.V. Sosunov, R.S. Ponomarev, V.K. Khenner, Md. Shamim Reza, Gamini Sumanasekera, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 1, pp. 165–170.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudakov, G.A., Sosunov, A.V., Ponomarev, R.S. et al. Synthesis of hollow carbon nanoshells and their application for supercapacitors. Phys. Solid State 60, 167–172 (2018). https://doi.org/10.1134/S1063783418010213

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418010213

Navigation