Skip to main content
Log in

Temperature dependence of the heat capacity and times of the establishment of vacancy equilibrium in simple crystals

  • Impurity Centers
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The concentration range of vacancies that affect the temperature dependence of the heat capacity at constant volume C v has been determined. The times of the establishment of vacancy equilibrium in spherical samples of simple crystals with different radii due to the thermal motion of atoms have been calculated for the process as close as possible to the equilibrium one with a decrease in the temperature from the melting point to the current value T. The free energy of an imperfect crystal has been determined taking into account contributions from interatomic interactions in terms of the Lennard-Jones potential functions and vibrational energies. The properties of an imperfect crystal have been calculated within the Lifshitz approximation linear in the density of vacancies with the frequency distribution function of the perfect crystal with the corresponding corrections, which reflect local vibrations of atoms around vacancies. The free energy of a defect-free perfect crystal has been determined from the calculated frequencies of normal vibrations with the inclusion of up to four nearest neighbors. It has been shown that disregard of acoustic (out-of-phase) parts of the spectrum in the calculation of the heat capacity C v with increasing temperature leads to a decrease (increase) in C v from the values calculated for the total vibrational spectrum. A nonequilibrium state of the imperfect crystal can lead to negative values of the heat capacity at constant volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Gusev and A. A. Rempel’, Nanocrystalline Materials (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  2. A. P. Zhilyaev and A. I. Pshenichnyuk, Superplasticity and Grain Boundaries in Ultrafine-Grained Materials (Fizmatlit, Moscow, 2008), p. 320 [in Russian].

    Google Scholar 

  3. N. F. Uvarov and V. V. Boldyrev, Usp. Khim. 70, 307 (2001).

    Article  Google Scholar 

  4. U. Müller, Inorganic Structural Chemistry (Wiley, New York, 2006; Intellekt, Dolgoprudnyi, Moscow region, Russia, 2011).

    Book  Google Scholar 

  5. A. B. Yaroslavtsev, Solid State Chemistry (Nauchnyi Mir, Moscow, 2009) [in Russian].

    Google Scholar 

  6. I. P. Suzdalev, Nanotechnology: Physicochemistry of Clusters, Nanostructures, and Nanomaterials (KomKniga, Moscow, 2006) [in Russian].

    Google Scholar 

  7. I. P. Bazarov, Thermodynamics (Moscow State University, Moscow, 1991) [in Russian].

    Google Scholar 

  8. L. A. Girifalco, Statistical Physics of Materials (Wiley, New York, 1973; Mir, Moscow, 1975).

    Google Scholar 

  9. B. S. Bokshtein, S. Z. Bokshtein, and A. A. Zhukhovitskii, Thermodynamics and Kinetics of Diffusion in Solids (Metallurgiya, Moscow, 1974) [in Russian].

    Google Scholar 

  10. H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes (Springer, Berlin, 2009; Intellekt, Dolgoprudnyi, Moscow region, Russia, 2011).

    Google Scholar 

  11. H. I. Aaronson, M. Enomoto, and J. K. Lee, Mechanisms of Diffusional Phase Transformations in Metals and Alloys (CRC Press, Boca Raton, Florida, United States, 2010).

    Book  Google Scholar 

  12. K. P. Gurov, B. A. Kartashkin, and Yu. E. Ugaste, Interdiffusion Processes in Multiphase Metal Systems (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  13. I. M. Lifshitz, Physics of Actual Crystals and Disordered Systems: A Collection of Selected Works (Nauka, Moscow, 1987), p. 552 [in Russian].

    Google Scholar 

  14. I. M. Lifshitz, Nuovo Cimento Suppl. 3, 716 (1956).

    Article  MathSciNet  Google Scholar 

  15. I. M. Lifshitz and A. M. Kosevich, Rep. Prog. Phys. 29, 217 (1966).

    Article  ADS  Google Scholar 

  16. A. Maradudin, Defects and Vibrational Spectrum of Crystals (Mir, Moscow, 1968) [in Russian].

    Google Scholar 

  17. A. M. Kosevich, Fundamentals of Mechanics of the Crystal Lattice (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  18. N. M. Plakida, Statistical Physics and Quantum Field Theory (Nauka, Moscow, 1973), p. 205 [in Russian].

    Google Scholar 

  19. V. K. Fedyanin, Statistical Physics and Quantum Field Theory (Nauka, Moscow, 1973), p. 241 [in Russian].

    Google Scholar 

  20. V. A. Zagrebnov and V. K. Fedyanin, Theor. Math. Phys. 10(1), 84 (1972).

    Article  Google Scholar 

  21. V. N. Bondarev and D. V. Tarasevich, Phys. Solid State 52(6), 1281 (2010).

    Article  Google Scholar 

  22. P. E. L’vov, V. V. Svetukhin, and A. V. Obukhov, Phys. Solid State 53(2), 421 (2011).

    Article  ADS  Google Scholar 

  23. L. S. Vasil’ev, Bull. Russ. Acad. Sci.: Phys. 72(8), 1065 (2008).

    Article  Google Scholar 

  24. V. I. Zubov and I. V. Zubov, Phys. Status Solidi B 243, 2711 (2006).

    Article  ADS  Google Scholar 

  25. A. I. Karasevskii and V. V. Lubashenko, Phys. Rev. B: Condens. Matter 71, 012107 (2005).

    Article  ADS  Google Scholar 

  26. G. F. Voronin and I. B. Kutsenok, J. Chem. Eng. Data 58, 2083 (2013).

    Article  Google Scholar 

  27. T. J. B Holland and R. J. Powell, J. Metamorph. Geol. 29, 333 (2011).

    Article  Google Scholar 

  28. T. Matsuo, N. Tanaka, M. Fukai, O. Yamamuro, and A. Inaba Ichikawa, Thermochim. Acta 403, 137 (2003).

    Article  Google Scholar 

  29. G. Leibfried, Gittertheorie der Mechanischen und Thermischen Eigenschaften der kristalle (Springer-Verlag, Berlin, 1955; GIFML, Moscow, 1963) [in German and in Russian].

    Google Scholar 

  30. P. Din, in Computational Methods in the Theory of the Solid State (Mir, Moscow, 1975), p. 209 [in Russian].

    Google Scholar 

  31. E. P. Troitskaya, V. V. Chabanenko, E. A. Filippenko, I. V. Zhikharev, and Ie. Ie. Gorbenko, Phys. Solid State 55(11), 2335 (2013).

    Article  ADS  Google Scholar 

  32. E. P. Troitskaya, V. V. Chabanenko, and E. E. Horbenko, Phys. Solid State 51(10), 2121 (2009).

    Article  ADS  Google Scholar 

  33. G. E. Moyano, P. Schwerdtfeger, and K. Rosciszewski, Phys. Rev. B: Condens. Matter 75, 024101 (2007).

    Article  ADS  Google Scholar 

  34. A. I. Lebedev, Phys. Solid State 51(2), 362 (2009).

    Article  ADS  Google Scholar 

  35. P. Heino, Phys. Rev. B: Condens. Matter 71, 144302 (2005).

    Article  ADS  Google Scholar 

  36. J. E. Turney, E. S. Landry, A. J. H. McGaughey, and C. H. Amon, Phys. Rev. B: Condens. Matter 79, 064301 (2009).

    Article  ADS  Google Scholar 

  37. L. V. Kulik, C. Guedj, M. W. Dashiell, J. Kolodzey, and A. Hairie, Phys. Rev. B: Condens. Matter 59, 15753 (1999).

    Article  ADS  Google Scholar 

  38. C. Cazorla, D. Errandonea, and E. Sola, Phys. Rev. B: Condens. Matter 80, 064105 (2009).

    Article  ADS  Google Scholar 

  39. E. Kabliman, P. Blaha, and K. Schwarz, Phys. Rev. B: Condens. Matter 82, 125308 (2010).

    Article  ADS  Google Scholar 

  40. Yu. K. Tovbin, The Theory of Physical and Chemical Processes at the Gas-Solid Boundary (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  41. V. S. Pervov, E. V. Manokhina, Zh. V. Dobrokhotova, A. E. Zotova, and A. Yu. Zavrazhnov, Inorg. Mater. 47, 1407 (2011).

    Article  Google Scholar 

  42. V. E. Panin and V. E. Egorushkin, Phys. Met. Metallogr. 110(5), 464 (2010).

    Article  ADS  Google Scholar 

  43. C. Kitel, Introduction to Solid State Physics (Wiley, New York, 1962; Nauka, Moscow, 1978).

    Google Scholar 

  44. Ya. I. Frenkel’, Introduction to the Theory of Metals (GITTL, Moscow, 1950) [in Russian].

    Google Scholar 

  45. Yu. K. Tovbin and V. N. Komarov, Phys. Solid State 56(2), 341 (2014).

    Article  ADS  Google Scholar 

  46. E. A. Moelwyn-Hughes, Physical Chemistry (Franklin Book, New York, 1961; Inostrannaya Literatura, Moscow, 1962).

    Google Scholar 

  47. C. Heer, Statistical Mechanics, Kinetic Theory, and Stochastic Processes (Academic, New York, 1972; Mir, Moscow, 1976).

    Google Scholar 

  48. Yu. K. Tovbin, Russ. J. Phys. Chem. A 88(6), 1017 (2014).

    Article  Google Scholar 

  49. Yu. K. Tovbin and S. V. Titov, Russ. J. Phys. Chem. A 88(12), 2035 (2014).

    Article  Google Scholar 

  50. G. Neumann and C. Tuijn, Self-Diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data (Pergamon, London, 2009), Vol. 14.

    Google Scholar 

  51. N. P. Tishchenko, Phys. Status Solidi A 73, 279 (1982).

    Article  ADS  Google Scholar 

  52. A. Berne, G. Boato, and M. De Paz, Nuovo Cimento 24, 1179 (1962).

    Article  Google Scholar 

  53. A. Berne, G. Boato, and M. De Paz, Nuovo Cimento 46, 182 (1966).

    Article  Google Scholar 

  54. N. H. Nachtrieb, E. Catalano, and J. A. Weil, J. Chem. Phys. 20, 1185 (1952).

    Article  ADS  Google Scholar 

  55. J. N. Mundy, L. W. Barr, and F. A. Smith, Philos. Mag. 15, 411 (1967).

    Article  ADS  Google Scholar 

  56. T. S. Lundy and J. F. Murdock, J. Appl. Phys. 33, 1671 (1962).

    Article  ADS  Google Scholar 

  57. S. J. Rothman, N. L. Peterson, and J. T. Robinson, Phys. Status Solidi 39, 635 (1970).

    Article  Google Scholar 

  58. Ch. Herzig, H. Eckseler, W. Bussmann, and D. Cardis, J. Nucl. Mater. 69/70, 61 (1978).

    Article  ADS  Google Scholar 

  59. S. J. Rothman and N. L. Peterson, Phys. Status Solidi 35, 305 (1969).

    Article  Google Scholar 

  60. J. Crank, The Mathematics of Diffusion (Clarendon, Oxford, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Tovbin.

Additional information

Original Russian Text © Yu.K. Tovbin, S.V. Titov, V.N. Komarov, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 2, pp. 342–352.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tovbin, Y.K., Titov, S.V. & Komarov, V.N. Temperature dependence of the heat capacity and times of the establishment of vacancy equilibrium in simple crystals. Phys. Solid State 57, 360–371 (2015). https://doi.org/10.1134/S1063783415020377

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415020377

Keywords

Navigation