Skip to main content
Log in

Lennard-Jones crystal: Complete vibrational spectrum, its local approximation, and thermodynamic functions

  • Chemical Thermodynamics and Thermochemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Different methods of taking into account the vibrational partition function in Helmholtz free energy for imperfect crystals of inert gases are compared. These methods are based on the complete vibrational spectrum of the fcc lattice or on few local frequencies. Thermodynamic properties of the Lennard- Jones crystal are considered in the framework of the lattice gas model with the potential interaction in the quasi-chemical approximation. In frequency calculations in the quasi-dimeric model, the role of local averaging, which leads to a threefold degeneracy of the vibrational contribution, is compared to the role of the direct diagonalization of the matrix of the second derivatives of potential energy in an imperfect cluster. The effects of different vibrational contributions on internal energy, entropy, and heat capacity at constant volume are considered as a function of temperature. The results of calculating thermal expansion in a vacuum for four inert gas crystals are compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. K. Tovbin, Russ. J. Phys. Chem. A 80, 1554 (2006).

    Article  CAS  Google Scholar 

  2. Yu. K. Tovbin, Russ. J. Phys. Chem. A 87, 1083 (2013).

    Article  CAS  Google Scholar 

  3. Yu. K. Tovbin, M. M. Senyavin, and L. K. Zhidkova, Russ. J. Phys. Chem. A 73, 245 (1999).

    Google Scholar 

  4. Yu. K. Tovbin, Molecular Theory of Adsorption in Porous Bodies (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  5. A. R. Ubbelohde, The Molten State of Matter (Wiley, New York 1978; Metallurgiya, Moscow, 1982).

    Google Scholar 

  6. L. S. Kukushkin and A. V. Osipov, Inorg. Mater. 35, 551 (1999).

    CAS  Google Scholar 

  7. V. I. Yukalov, Phys. Rev. B 32, 436 (1985).

    Article  CAS  Google Scholar 

  8. J. M. Rickman and R. LeSar, Ann. Rev. Mater. Res. 32, 195 (2002).

    Article  CAS  Google Scholar 

  9. S. K. Kwak, Y. Cahyana, and J. K. Singh, J. Chem. Phys. 128, 134514 (2008).

    Article  Google Scholar 

  10. A. Donev, F. H. Stillinger, and S. Torquato, J. Comput. Phys. 225, 509 (2007).

    Article  CAS  Google Scholar 

  11. G. Leibfried, Gittertheorie der mechanischen und thermischen Eigenschaften der Kristalle (Springer-Verlag, Berlin, 1955; GIFML, Moscow, 1963).

    Book  Google Scholar 

  12. G. Leibfried and W. Ludwig, Solid State Phys. 12, 276 (1961).

    Google Scholar 

  13. N. M. Plakida, Statistical Physics and Quantum Field Theory, Ed. by N. N. Bogolyubov (Nauka, Moscow, 1973), p. 205 [in Russian].

  14. A. M. Kosevich, Crystal Lattice Mechanics Principles (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  15. P. Dean, in Computational Methods in Solid State Theory, Collection of Articles (Mir, Moscow, 1975), p. 209 [in Russian].

    Google Scholar 

  16. A. Maradudin, Solid State Phys. 18, 273 (1966).

    CAS  Google Scholar 

  17. I. P. Bazarov, Statistical Theory of the Crystalline State (Mosk. Gos. Univ., Moscow, 1972) [in Russian].

    Google Scholar 

  18. Yu. K. Tovbin and S. V. Titov, Russ. J. Phys. Chem. A 87, 1696 (2013).

    Article  CAS  Google Scholar 

  19. Yu. K. Tovbin and A. B. Rabinovich, Russ. J. Phys. Chem. A 88, 192 (2014).

    Article  CAS  Google Scholar 

  20. S. V. Titov and Yu. K. Tovbin, Russ. J. Phys. Chem. A 88, 2035 (2014).

    Article  CAS  Google Scholar 

  21. Yu. K. Tovbin, S. V. Titov, and V. N. Komarov, Phys. Solid State 57, 360 (2015).

    Article  CAS  Google Scholar 

  22. A. Einstien, Ann. Phys. 22, 180 (1907).

    Google Scholar 

  23. A. Einstein, Collected Scientific Works (Nauka, Moscow, 1966), Vol. 3, p. 134.

    Google Scholar 

  24. E. A. Moelwin-Hughes, Physical Chemistry (Pergamon, London, New York, Paris, 1961; Inostr. Liter., Moscow, 1962).

    Google Scholar 

  25. G. Mie, Ann. Phys. 11, 657 (1903).

    Article  Google Scholar 

  26. Yu. K. Tovbin, Russ. J. Phys. Chem. A 88, 1438 (2014).

    Article  CAS  Google Scholar 

  27. I. M. Lifshitz, Selected Works. Physics of Real Crystals and Disordered Systems (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  28. I. M. Lifshitz, Nuovo Cim. Suppl. 3, 716 (1956).

    Article  Google Scholar 

  29. I. M. Lifshitz and A. M. Kosevich, Rep. Progr. Phys. 29, 217 (1966).

    Article  Google Scholar 

  30. Yu. K. Tovbin, Theory of Physicochemical Processes at the Gas-Solid Interface (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  31. J. O. Hirschfelder, Ch. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    Google Scholar 

  32. Ch. Kittel, Introduction to Solid State Physics (Wiley, Chapman Hall, London, New York, 1953).

    Google Scholar 

  33. D. N. Batchelder, D. L. Losee, and R. O. Simmons, Phys. Rev. 162, 767 (1967).

    Article  CAS  Google Scholar 

  34. O. G. Peterson, D. N. Batchelder, and R. O. Simmons, Phys. Rev. 150, 703 (1966).

    Article  CAS  Google Scholar 

  35. D. L. Losee and R. O. Simmons, Phys. Rev. 172, 944 (1968).

    Article  CAS  Google Scholar 

  36. C. R. Tilford and C. A. Swenson, Phys. Rev. B 5, 719 (1972).

    Article  Google Scholar 

  37. K. B. Tolpygo and E. P. Troitskaya, Sov. Phys. Solid State 16, 514 (1974).

    Google Scholar 

  38. G. B. Taggert, Phys. Rev. B 19, 2895 (1979).

    Article  Google Scholar 

  39. Z. Rac and M. F. Collins, Phys. Rev. B 20, 229 (1980).

    Google Scholar 

  40. G. E. Moyano, P. Schwerdtfeger, and K. Rosciszewski, Phys. Rev. B 75, 024101 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Tovbin.

Additional information

Original Russian Text © S.V. Titov, Yu.K. Tovbin, 2015, published in Zhurnal Fizicheskoi Khimii, 2015, Vol. 89, No. 10, pp. 1531–1538.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titov, S.V., Tovbin, Y.K. Lennard-Jones crystal: Complete vibrational spectrum, its local approximation, and thermodynamic functions. Russ. J. Phys. Chem. 89, 1732–1739 (2015). https://doi.org/10.1134/S0036024415100301

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415100301

Keywords

Navigation