Skip to main content
Log in

Structural Changes in Nanometer-Thick Silicon-on-Insulator Films During High-Temperature Annealing

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The thermal stability of silicon-on-insulator films with a thickness of 4.7  and 2.2 nm is studied as a function of annealing temperature in the range of Т = 800–1200°C by scanning electron microscopy and spectral ellipsometry. No signs of film melting were found; the films remain continuous over this annealing temperature range. A decrease in the thickness of the films and a change in their phase composition with an increase in temperature are discovered. According to the data of spectral ellipsometry, as the annealing temperature is increased, the content of the crystalline phase in the films decreases and the content of the amorphous phase increases. The activation energy of the process of film amorphization is estimated. The revealed properties are discussed from the viewpoint of diffusion of oxygen atoms into a silicon film and rearrangement of Si–Si bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. I. E. Tyschenko and V. P. Popov, in Advances in Semiconductor Nanostructures: Growth, Characterization, Properties, and Applications, Ed. by A. V. Latyshev (Elsevier, Amsterdam, 2016), p. 409.

    Google Scholar 

  2. Y. Ono, M. Nagase, M. Tabe, and Y. Takahashi, Jpn. J. Appl. Phys., Part 1 34, 1728 (1995).

    Article  ADS  Google Scholar 

  3. Y. Ishikawa, M. Kumezawa, R. Nuryadi, and M. Tabe, Appl. Surf. Sci. 190, 11 (2002).

    Article  ADS  Google Scholar 

  4. Y. Ishikawa, Y. Imai, H. Ikeda, and M. Tabe, Appl. Phys. Lett. 83, 3162 (2003).

    Article  ADS  Google Scholar 

  5. B. Legrand, V. Agache, T. Mélin, J. P. Nys, V. Senez, and D. Stiévenard, J. Appl. Phys. 91, 106 (2002).

    Article  ADS  Google Scholar 

  6. R. Nuryadi, Y. Ishikawa, Y. Ono, and M. Tabe, J. Vac. Sci. Technol. B 20, 167 (2002).

    Article  Google Scholar 

  7. P. Pavlov, Z. Phys. Chem. 65, 1 (1908).

    Google Scholar 

  8. F. A. Lindemann, Phys. Z. 11, 609 (1910).

    Google Scholar 

  9. H. Reiss and I. B. Wilson, J. Colloid. Sci. 3, 551 (1948).

    Article  Google Scholar 

  10. F. G. Shi, J. Matter. Res. 9, 1307 (1994).

    Article  ADS  Google Scholar 

  11. S. V. Rykhlitskii, E. V. Spesivtsev, V. A. Shvets, and V. Yu. Prokop’ev, Prib. Tekh. Eksp., No. 2, 161 (2012).

  12. H. J. Oel and V. D. Frhchette, J. Am. Ceram. Sci. 50, 542 (1967).

    Article  Google Scholar 

  13. K. E. Petersen, Proc. IEEE 70, 420 (1982).

    Article  ADS  Google Scholar 

  14. H. Ryssel and I. Ruge, in Ion Implantation (Wiley, Chichester, 1986), p. 478.

    Google Scholar 

  15. V. A. Antonov, E. V. Spesivtsev, and I. E. Tyschenko, Semiconductors 45, 1089 (2011).

    Article  ADS  Google Scholar 

  16. U. Gösele and T. Y. Tan, Appl. Phys. A 28, 79 (1982).

    Article  ADS  Google Scholar 

  17. B. E. Deal and A. S. Grove, J. Appl. Phys. 36, 3770 (1965).

    Article  ADS  Google Scholar 

  18. H. C. Lu, T. Gustafsson, E. P. Gusev, and E. Garfunkel, Appl. Phys. Lett. 67, 1742 (1995).

    Article  ADS  Google Scholar 

  19. A. V. Fadeev and Yu. N. Devyatko, Tech. Phys. 64, 575 (2019).

    Article  Google Scholar 

  20. E. P. Gusev, H. C. Lu, T. Gustafsson, and E. Garfunkel, Mater. Res. Soc. Symp. Proc. 318, 69 (1994).

    Article  Google Scholar 

  21. L. Tsetseris and S. T. Pantelides, Phys. Rev. Lett. 97, 116101 (2006).

    Article  ADS  Google Scholar 

  22. T. Akiyama and H. Kageshima, Surf. Sci. 576, L65 (2005).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.A. Ovchinnikov for fruitful discussions of the study. The experiments were carried out using the equipment of the shared facilities High Technologies and Analytics of Nanosystems of Novosibirsk State University.

Funding

The study was carried out under financial support of the Ministry of Education and Science of Russia (state assignment 0242-2021-0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Tyschenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Z. Smirnova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyschenko, I., Spesivtsev, E., Shklyaev, A. et al. Structural Changes in Nanometer-Thick Silicon-on-Insulator Films During High-Temperature Annealing. Semiconductors 56, 223–229 (2022). https://doi.org/10.1134/S1063782622020166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782622020166

Keywords:

Navigation