Skip to main content
Log in

Transverse Nernst–Ettingshausen Effect in the Two–Dimensional Electron Gas of a Doubly Periodic Semiconductor Superlattice

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

In the single-electron approximation, in an external magnetic field with a temperature gradient, the surface current density of charge carriers in two-dimensional doubly periodic semiconductor superlattices of n-type conductivity is calculated. The magnetic field is assumed to be constant, homogeneous, and applied perpendicular to the plane of the electron gas. As the result of simultaneous solution of the Schrödinger equation and Boltzmann kinetic equation, it is demonstrated that the dependences of the surface density of the transverse current on temperature and the modulus of the temperature gradient are highly nonlinear, and regions with negative differential conductivity are present. The dependence of the relaxation time on the electron quasi-momentum is taken into consideration phenomenologically in the model through the law of carrier dispersion in the magnetic subbands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. P. G. Harper, Proc. Phys. Soc. 68, 874 (1955).

    Article  ADS  Google Scholar 

  2. F. A. Butler and E. Brown, Phys. Rev. B 166, 630 (1968).

    Article  ADS  Google Scholar 

  3. S. R. Figarova, G. I. Huseynov, and V. R. Figarov, Semiconductors 52, 853 (2018).

    Article  ADS  Google Scholar 

  4. I. G. Kuleev, A. T. Lonchakov, G. L. Shtrapenin, and I. Yu. Arapov, Phys. Solid State 39, 1575 (1997).

    Article  ADS  Google Scholar 

  5. Z. Z. Alisultanov, JETP Lett. 99, 702 (2014).

    Article  ADS  Google Scholar 

  6. A. Sekine and N. Nagaosa, Phys. Rev. B 101, 155204 (2020).

    Article  ADS  Google Scholar 

  7. V. Ya. Demikhovskii and A. A. Perov, Phys. Rev. B 75, 205307 (2007).

    Article  ADS  Google Scholar 

  8. A. A. Perov, L. V. Solnyshkova, and D. V. Khomitsky, Phys. Rev. B 82, 165328 (2010).

    Article  ADS  Google Scholar 

  9. C. Albrecht, J. H. Smet, K. vonKlitzing, D. Weiss, V. Umansky, and H. Schweizer, Phys. Rev. Lett. 86, 147 (2001).

    Article  ADS  Google Scholar 

  10. M. C. Geisel, J. H. Smet, V. Umansky, K. von Klitzing, B. Naundorf, R. Ketzmerick, and H. Schweizer, Phys. Rev. Lett. 92, 256801 (2004).

    Article  ADS  Google Scholar 

  11. E. M. Lifshits and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 9: Statistical Physics, Part 2 (Nauka, Moscow, 1978; Pergamon, New York, 1980).

  12. D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).

    Article  ADS  Google Scholar 

  13. S. K. Sutradhar and D. Chattopadhyay, J. Phys. C: Solid State Phys. 12, 1693 (1979).

    Article  ADS  Google Scholar 

  14. I. M. Tsidil’kovskii, Thermomagnetic Phenomena in Semiconductors (Nauka, Moscow, 1960) [in Russian].

    Google Scholar 

  15. L. Esaki and R. Tsu, IBM J. Res. Dev. 14, 61 (1970).

    Article  Google Scholar 

  16. G. M. Shmelev, G. I. Tsurkan, and Nguen Khog Shon, Russ. Phys. J. 28, 161 (1985).

    Google Scholar 

  17. V. V. Fomin and E. R. Pokatilov, Phys. Status Solidi B 97, 161 (1980).

    Article  ADS  Google Scholar 

  18. A. A. Bulgakov and O. B. Shramkova, Semiconductors 35, 557 (2001).

    Article  ADS  Google Scholar 

  19. A. A. Ignatov and Yu. A. Romanov, Sov. Phys. Solid State 17, 2181 (1975).

    Google Scholar 

  20. T. Schlösser, K. Ensslin, J. P. Kotthaus, and M. Holland, Semicond. Sci Technol. 11, 1582 (1996).

    Article  ADS  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation under State assignment no. 0729-2020-0058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Perov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by G. Levina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perov, A.A., Pikunov, P.V. Transverse Nernst–Ettingshausen Effect in the Two–Dimensional Electron Gas of a Doubly Periodic Semiconductor Superlattice. Semiconductors 55, 869–873 (2021). https://doi.org/10.1134/S1063782621100183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782621100183

Keywords:

Navigation