Skip to main content
Log in

Transverse Thermomagnetic Effect in the Two-Dimensional Electron Gas of Surface Semiconductor Superlattice

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The surface current density of charge carriers in two-dimensional doubly periodic n-type semiconductor superlattices in an external magnetic field in the presence of temperature gradient has been calculated in the single-electron approximation. The magnetic field was assumed to be permanent, homogeneous, and oriented perpendicular to the electron-gas plane. A joint solution of the Schrödinger equation and kinetic Boltzmann equation showed that the dependences of the surface density of transverse current on temperature and temperature-gradient magnitude are significantly nonlinear and contain portions with negative transverse differential conductivity. The dependence of the relaxation time on the electron quasi-momentum is phenomenologically taken into account in the model via the dispersion relation for carriers in magnetic subbands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. P. G. Harper, Proc. Phys. Soc. A 68, 874 (1955).

    Article  ADS  Google Scholar 

  2. F. A. Butler and E. Brown, Phys. Rev. B 166, 630 (1968).

    Article  ADS  Google Scholar 

  3. S. R. Figarova, G. I. Huseinov, and V. R. Figarov, Semiconductors 52, 853 (2018).

    Article  ADS  Google Scholar 

  4. I. G. Kuleev, A. T. Lonchakov, G. L. Shtrapenin, et al., Phys. Solid State 39, 1575 (1997).

    Article  ADS  Google Scholar 

  5. Z. Z. Alisultanov, JETP Lett. 99, 702 (2014).

    Article  ADS  Google Scholar 

  6. A. Sekine and N. Nagaosa, Phys. Rev. B 101, 155204 (2020).

    Article  ADS  Google Scholar 

  7. V. Ya. Demikhovskii and A. A. Perov, Phys. Rev. B 75, 205307 (2007).

    Article  ADS  Google Scholar 

  8. A. A. Perov, L. V. Solnyshkova, and D. V. Khomitsky, Phys. Rev. B 82, 165328 (2010).

    Article  ADS  Google Scholar 

  9. L. V. Keldysh, Sov. Phys. Solid State 4, 1658 (1962).

    Google Scholar 

  10. N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, et al., Semiconductors 32, 343 (1998).

    Article  ADS  Google Scholar 

  11. C. Albrecht, J. H. Smet, K. von Klitzing, et al., Phys. Rev. Lett. 86, 147 (2001).

    Article  ADS  Google Scholar 

  12. M. C. Geisel, J. H. Smet, V. Umansky, et al., Phys. Rev. Lett. 92, 256801 (2004).

    Article  ADS  Google Scholar 

  13. T. Schlösser, K. Ensslin, J. P. Kotthaus, et al., Semicond. Sci. Technol. 11, 1582 (1996).

    Article  ADS  Google Scholar 

  14. Y. K. Ryu, R. Frisenda, and A. Castellanos-Gomez, Chem. Commun. 55, 11498 (2019).

    Article  Google Scholar 

  15. M. Polini, F. Guinea, M. Lewenstein, et al., Nat. Nanotechnol. 8, 625 (2013).

    Article  ADS  Google Scholar 

  16. E. M. Lifshits and L. P. Pitaevski, Course of Theoretical Physics, Vol. 9: Statistical Physics, Part 2 (Nauka, Moscow, 1978; Pergamon, New York, 1980).

  17. D. J. Thouless, M. Kohmoto, M. P. Nightingale, et al., Phys. Rev. Lett. 49, 405 (1982).

    Article  ADS  Google Scholar 

  18. B. A. Dubrovin and S. P. Novikov, Sov. Phys. JETP 52, 511 (1980).

    ADS  Google Scholar 

  19. S. K. Sutradhar and D. Chattopadhyay, J. Phys. C 12, 1693 (1979).

    Article  ADS  Google Scholar 

  20. S. I. Borisenko, Semiconductors 33, 1128 (1999).

    Article  ADS  Google Scholar 

  21. A. I. Anselm, Introduction to Semiconductor Theory (Prentice-Hall, Englewood Cliffs, 1981).

    Google Scholar 

  22. V. Ya. Demikhovskii and A. A. Perov, Europhys. Lett. 76, 477 (2006).

    Article  ADS  Google Scholar 

  23. A. A. Perov and L. V. Solnyshkova, JETP Lett. 88, 625 (2008).

    Article  ADS  Google Scholar 

  24. L. Esaki and R. Tsu, IBM J. Res. Dev. 14, 61 (1970).

    Article  Google Scholar 

  25. G. M. Shmelev, G. I. Tsurkan, and Nguen Khog Shon, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 2, 84 (1985).

  26. V. V. Fomin and E. R. Pokatilov, Phys. Status Solidi B 97, 161 (1980).

    Article  ADS  Google Scholar 

  27. A. A. Bulgakov and O. B. Shramkova, Semiconductors 35, 557 (2001).

    Article  ADS  Google Scholar 

  28. A. A. Ignatov and Yu. A. Romanov, Sov. Phys. Solid State 17, 2181 (1975).

    Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (State assignment no. 0729-2020-0058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Perov.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perov, A.A., Pikunov, P.V. Transverse Thermomagnetic Effect in the Two-Dimensional Electron Gas of Surface Semiconductor Superlattice. J. Exp. Theor. Phys. 133, 229–235 (2021). https://doi.org/10.1134/S1063776121080094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121080094

Navigation