Skip to main content
Log in

Investigation of the Electrical Properties of Double-Gate Dual-Active-Layer (DG-DAL) Thin-Film Transistor (TFT) with HfO2|La2O3|HfO2 (HLH) Sandwich Gate Dielectrics

  • PHYSICS OF SEMICONDUCTOR DEVICES
  • Published:
Semiconductors Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, the electrical properties of a double-gate dual-active-layer (DG-DAL) thin-film transistor (TFT) are investigated. To increase the ON-current and pixel intensity, and control the voltage stress bias, the conventional gate oxide material (silicon dioxide, SiO2) is replaced with a tri-high-k gate dielectric layer, hafnium dioxide (HfO2)/lanthanum oxide (La2O3)/hafnium dioxide (HfO2)—(HLH). Further, the performance of the proposed DG-DAL structure is compared with the single-active-layer (SAL) and dual-active-layer (DAL) TFTs. The amorphous indium-gallium zinc-oxide (a-IGZO) is considered as active layer for SAL channel region, and on the other hand, a-IGZO and indium-tin-oxide (ITO) are considered as active layers for DAL TFT and DG-DAL TFT channel regions. The parameters such as OFF-current, ON-current, ION/IOFF ratio, threshold voltage, mobility, average subthreshold swing, etc. are evaluated for the considered structures. It is observed that the DG-DAL TFT with HLH dielectric offers high ON-current of 3.85 × 10–3 A/μm, very low OFF-current of 2.53 × 10–17 A/μm, very high ION/IOFF ratio of 1.51 × 1014, threshold voltage of 0.642 V, high mobility of 35 cm2 v–1 s–1 and average subthreshold swing of 127.84 mV/dec. A commercial TCAD simulation tool ATLAS from SilvacoTM is used to investigate all the parameters for considered structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature (London, U.K.) 432 (7016), 488 (2004).

    Article  ADS  Google Scholar 

  2. M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. S. Park, J. K. Jeong, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett. 90, 212114 (2007).

    Article  ADS  Google Scholar 

  3. J. K. Jeong, J. H. Jeong, Y. G. Mo, and H. D. Kim, J. Electr. Chem. Soc. 155, H873 (2008).

    Article  Google Scholar 

  4. J. K. Jeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett. 91, 113505 (2007).

    Article  ADS  Google Scholar 

  5. R. A. Street, Springer Handbook of Electronic and Photonic Materials (Springer, New York, 2000).

    Google Scholar 

  6. E. Fortunato, P. Barquinha, A. Pimentel, L. Pereira, G. Goncalves, and R. Martins, Phys. Status Solidi Rapid Res. Lett. 1, R34 (2007).

    Article  ADS  Google Scholar 

  7. K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, Jpn. Appl. Phys. Lett., Part 1 45, 4303 (2006).

    Article  ADS  Google Scholar 

  8. A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films 486, 38 (2005).

    Article  ADS  Google Scholar 

  9. C. P. Yang, S. J. Chang, T. H. Chang, C. Y. Wei, Y. M. Juan, C. J. Chiu, and W. Y. Weng, IEEE Electron. Dev. Lett. 38, 572 (2017).

    Article  ADS  Google Scholar 

  10. T.-H. Chang,  S.-J. Chang,  C. J. Chiu, C.-Y. Wei, Y.-M. Juan, and W.-Y. Weng, IEEE Photon. Technol. Lett. 27, 915 (2015).

    Article  ADS  Google Scholar 

  11. Y. Cong, D. Hanand, X. Zhou, L. Huang, P. Shi, W. Yu, Y. Zhang, S. Zhang, X. Zhan, and Y. Wang, IEEE Electron. Dev. Lett. 37, 53 (2016).

    Article  ADS  Google Scholar 

  12. J.-I. Kim, K. H. Ji, H. Y. Jung, S. Y. Park, R. Choi, M. Jang, H. Yang, D.-H. Kim, J.-U. Bae, C. D. Kim, and J. K. Jeong, Appl. Phys. Lett. 99, 122102 (2011).

    Article  ADS  Google Scholar 

  13. S. I. Kim, C. J. Kim, J. C. Park, I. Song, S. W. Kim, H. Yin, E. Lee, J. C. Lee, and Y. Park, in Proceedings of the IEEE International Electron Device Meeting 1, San Francisco, USA,2008, p. 1.

  14. H. Y. Jung, Y. Kang, A. Y. Hwang, C. K. Lee, S. Han, D.-H. Kim, J.-U. Bae, W.-S. Shin, and J. K. Jeong, Sci. Rep. 4, 3765 (2014).

    Article  Google Scholar 

  15. J. H. Yang, J. H. Choi, J. E. Pi, H. O. Kim, E. S. Park, O. S. Kwon, S. Nam, H. S. Cho, S. Yoo, and C. S. Hwang, SID Symp. Dig. Tech. Papers 47, 1151 (2016).

  16. K. A. Stewart, V. Gouliouk, J. M. McGlone, and J. F. Wager, IEEE Trans. Electron Dev. 64, 4131 (2017).

    Article  ADS  Google Scholar 

  17. Y. Shao, X. Xiao, X. He, W. Deng, and S. Zhang, IEEE Electron Dev. Lett. 36, 573 (2015).

    Article  ADS  Google Scholar 

  18. X. Ma, J. Zhang, W. Cai, H. Wang, J. Wilson, Q. Wang, Q. Xin, and A. Song, Sci. Rep. 7, 809 (2017).

    Article  ADS  Google Scholar 

  19. Y. Zhao, M. Toyama, K. Kita, K. Kyuno, and A. Toriumi, Appl. Phys. Lett. 88, 072904 (2006).

    Article  ADS  Google Scholar 

  20. P. Barquinha, L. Pereira, G. Goncalves, D. Kuscer, M. Kosec, A. Vila, A. Olziersky, J. Morante, R. Martins, and E. Fortunato, J. Soc. Inform. Display 18, 762 (2010).

    Article  Google Scholar 

  21. J. Her, F. Chen, W. Li, and T. Pan, IEEE Trans. Electron Dev. 62, 1659 (2015).

    Article  ADS  Google Scholar 

  22. C. H. Wann, K. Noda, T. Tanaka, M. Yoshida, and C. Hu, IEEE Trans. Electron Dev 43, 1742 (1996).

    Article  ADS  Google Scholar 

  23. H. S. P. Wong, D. J. Frank, P. M. Solomon, C. H. J. Wann, and J. J. Welser, Proc. IEEE 87, 537 (1999).

    Article  Google Scholar 

  24. S. Zhang, R. Han, J. K. O. Sin, and M. Chan, IEEE Electron Dev. Lett. 22, 530 (2001).

    Article  ADS  Google Scholar 

  25. K.-S. Son, J.-S. Jung, K.-H. Lee, T. S. Kim, J. S. Park, Y.-H. Choi, K. Park, J.-Y. Kwon, B. Koo, and S. Lee, IEEE Electron. Dev. Lett. 31, 219 (2010).

    Article  ADS  Google Scholar 

  26. J. S. Park, T. S. Kim, K. S. Son, J. S. Jung, K.-H. Lee, J.-Y. Kwon, B. Koo, and S. Lee, IEEE Electron. Dev. Lett. 31, 440 (2010).

    Article  ADS  Google Scholar 

  27. K.-H. Lee, J. S. Jung, K. S. Son, J. S. Park, T. S. Kim, R. Choi, J. K. Jeong, J.-Y. Kwon, B. Koo, and S. Lee, Appl. Phys. Lett. 95, 232106 (2009).

    Article  ADS  Google Scholar 

  28. T. C. Fung, C. S. Chuang, C. Chen, K. Abe, R. Cottle, M. Townsend, H. Kumomi, and J. Kanicki, J. Appl. Phys. 106, 084511 (2009).

    Article  ADS  Google Scholar 

  29. M. A. Marrs, C. D. Moyer, E. J. Bawolek, R. J. Cordova, J. Trujillo, G. B. Raupp, and B. D. Vogt, IEEE Trans. Electron Dev. 58, 3428 (2011).

    Article  ADS  Google Scholar 

  30. N. Preissler, O. Bierwagen, A. T. Ramu, and J. S. Speck, Phys. Rev. B 88, 085305 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Saramekala.

Ethics declarations

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, L., Moparthi, S., Tiwari, P.K. et al. Investigation of the Electrical Properties of Double-Gate Dual-Active-Layer (DG-DAL) Thin-Film Transistor (TFT) with HfO2|La2O3|HfO2 (HLH) Sandwich Gate Dielectrics. Semiconductors 54, 1290–1295 (2020). https://doi.org/10.1134/S1063782620100243

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620100243

Keywords:

Navigation