Skip to main content
Log in

Investigation of the Photosensitivity of Narrow-Gap and Gapless HgCdTe Solid Solutions in the Terahertz and Sub-Terahertz Range

  • XXIV INTERNATIONAL SYMPOSIUM “NANOPHYSICS AND NANOELECTRONICS”, NIZHNY NOVGOROD, MARCH 10–13, 2020
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The photoresponse is investigated in the frequency range of 0.15–15 THz in HgCdTe epitaxial layers with a cadmium concentration from 15.2 to 19.2% grown by molecular-beam epitaxy. It is shown that narrow-gap and gapless HgCdTe solid solutions can be used as detectors of both terahertz and sub-terahertz radiation with a characteristic response time of 2–4 ns and with a sensitivity approaching n-InSb-based detectors widely used in this range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. Ruffenach, A. Kadykov, V. V. Rumyantsev, J. Torres, D. Coquillat, D. But, S. S. Krishtopenko, C. Consejo, W. Knap, S. Winnerl, M. Helm, M. A. Fadeev, N. N. Mikhailov, S. A. Dvoretskii, V. I. Gavrilenko, S. V. Morozov, and F. Teppe, APL Mater. 5, 035503 (2017).

    Article  ADS  Google Scholar 

  2. B. Buttner, C. X. Liu, G. Tkachov, E. G. Novik, C. Brune, H. Buhmann, E. M. Hankiewicz, P. Recher, B. Trauzettel, S. C. Zhang, and L. W. Molenkamp, Nat. Phys. 7, 418 (2011).

    Article  Google Scholar 

  3. F. Teppe, M. Marcinkiewicz, S. S. Krishtopenko, S. Ruffenach, C. Consejo, A. M. Kadykov, W. Desrat, D. But, W. Knap, J. Ludwig, S. Moon, D. Smirnov, M. Orlita, Z. Jiang, S. V. Morozov, V. I. Gavrilenko, N. N. Mikhailov, and S. A. Dvoretskii, Nat. Commun. 7, 12576 (2016).

    Article  ADS  Google Scholar 

  4. M. Orlita, D. M. Basko, M. S. Zholudev, F. Teppe, W. Knap, V. I. Gavrilenko, N. N. Mikhailov, S. A. Dvoretskii, P. Neugebauer, C. Faugeras, A. L. Barra, G. Martinez, and M. Potemski, Nat. Phys. 10, 233 (2014).

    Article  Google Scholar 

  5. D. B. But, M. Mittendorff, C. Consejo, F. Teppe, N. N. Mikhailov, S. A. Dvoretskii, C. Faugeras, S. Winnerl, M. Helm, W. Knap, M. Potemski, and M. Orlita, Nat. Photon. 13, 783 (2019).

    Article  ADS  Google Scholar 

  6. A. Rogalski, Rep. Prog. Phys. 68, 2267 (2005).

    Article  ADS  Google Scholar 

  7. A. V. Galeeva, A. I. Artamkin, N. N. Mikhailov, S. A. Dvoretskii, S. N. Danilov, L. I. Ryabova, and D. R. Khokhlov, JETP Lett. 106, 162 (2017).

    Article  ADS  Google Scholar 

  8. M. Otteneder, D. Sacré, I. Yahniuk, G. V. Budkin, K. Diendorfer, D. A. Kozlov, I. A. Dmitriev, N. N. Mikhailov, S. A. Dvoretsky, V. V. Bel’kov, W. Knap, and S. D. Ganichev, Phys. Status Solidi B 257, 2000023 (2020).

    Article  Google Scholar 

  9. C. Brüne, C. X. Liu, E. G. Novik, E. M. Hankiewicz, H. Buhmann, Y. L. Chen, X. L. Qi, Z. X. Shen, S. C. Zhang, and L. W. Molenkamp, Phys. Rev. Lett. 106, 126803 (2011).

    Article  ADS  Google Scholar 

  10. S. Dvoretsky, N. Mikhailov, Y. Sidorov, V. Shvets, S. Danilov, B. Wittman, and S. Ganichev, J. Electron. Mater. 39, 918 (2010).

    Article  ADS  Google Scholar 

  11. N. N. Mikhailov, R. N. Smirnov, S. A. Dvoretsky, Y. G. Sidorov, V. A. Shvets, E. V. Spesivtsev, and S. V. Rykhlitski, Int. J. Nanotechnol. 3, 120 (2006).

    Article  ADS  Google Scholar 

  12. V. A. Shvets, N. N. Mikhailov, D. G. Ikusov, I. N. Uzhakov, and S. A. Dvoretskii, Opt. Spectrosc. 127, 340 (2019).

    Article  ADS  Google Scholar 

  13. V. V. Rumyantsev, A. V. Ikonnikov, A. V. Antonov, S. V. Morozov, M. S. Zholudev, K. E. Spirin, V. I. Gavrilenko, S. A. Dvoretskii, and N. N. Mikhailov, Semiconductors 47, 1438 (2013).

    Article  ADS  Google Scholar 

  14. S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, Appl. Phys. Lett. 104, 072102 (2014).

    Article  ADS  Google Scholar 

  15. N. L. Bazhenov, K. D. Mynbaev, and G. G. Zegrya, Semiconductors 49, 432 (2015).

    Article  ADS  Google Scholar 

  16. N. L. Bazhenov, K. D. Mynbaev, and G. G. Zegrya, Semiconductors 49, 1170 (2015).

    Article  ADS  Google Scholar 

  17. S. Krishnamurthy, M. A. Berding, and Z. G. Yu, J. Electron. Mater. 35, 1369 (2006).

    Article  ADS  Google Scholar 

  18. S. V. Morozov, V. V. Rumyantsev, A. A. Dubinov, A. V. Antonov, A. M. Kadykov, K. E. Kudryavtsev, D. I. Kuritsin, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, Appl. Phys. Lett. 107, 042105 (2015).

    Article  ADS  Google Scholar 

  19. E. H. Putley, Semicond. Semimet. 12, 143 (1977).

    Article  Google Scholar 

  20. A. Rogalski, Opto-Electron. Rev. 20, 279 (2012).

    Article  ADS  Google Scholar 

  21. E. O. Melezhik, J. V. Gumenjuk-Sichevska, and F. F. Sizov, Nanoscale Res. Lett. 11, 181 (2016).

    Article  ADS  Google Scholar 

  22. F. Sizov, V. Petriakov, V. Zabudsky, D. Krasilnikov, M. Smoliy, and S. Dvoretski, Appl. Phys. Lett. 101, 082108 (2012).

    Article  ADS  Google Scholar 

  23. B. A. Weber and S. M. Kulpa, Int. J. Infrared Millim. Waves 3, 235 (1982).

    Article  ADS  Google Scholar 

  24. V. V. Rumyantsev, D. V. Kozlov, S. V. Morozov, M. A. Fadeev, A. M. Kadykov, F. Teppe, V. S. Varavin, M. V. Yakushev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, Semicond. Sci. Technol. 32, 095007 (2017).

    Article  ADS  Google Scholar 

  25. D. N. Talwar and M. Vandevyver, J. Appl. Phys. 56, 1601 (1984).

    Article  ADS  Google Scholar 

  26. Yu. B. Vasilyev, A. A. Usikova, N. D. Il’inskaya, P. V. Petrov, and Yu. L. Ivanov, Semiconductors 42, 1234 (2008).

    Article  ADS  Google Scholar 

  27. V. V. Rumyantsev, S. V. Morozov, K. E. Kudryavtsev, V. I. Gavrilenko, and D. V. Kozlov, Semiconductors 46, 1287 (2012).

    Article  Google Scholar 

  28. V. Ya. Aleshkin, S. V. Morozov, V. V. Rumyantsev, and I. V. Tuzov, Semiconductors 49, 113 (2015).

    Article  ADS  Google Scholar 

  29. P. A. Bushuykin, B. A. Andreev, V. Y. Davydov, D. N. Lobanov, D. I. Kuritsyn, A. N. Yablonskiy, N. S. Averkiev, G. M. Savchenko, and Z. F. Krasilnik, J. Appl. Phys. 123, 195701 (2018).

    Article  ADS  Google Scholar 

  30. V. V. Rumyantsev, K. V. Maremyanin, A. P. Fokin, A. A. Dubinov, V. V. Utochkin, M. Y. Glyavin, N. N. Mikhailov, S. A. Dvoretskii, S. V. Morozov, and V. I. Gavrilenko, Semiconductors 53, 1217 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

The sensitivity measurements of structures based on HgCdTe in the sub-THz range, as well as measurements of the CR spectra for analyzing gyrotron radiation, were supported by the Russian Science Foundation, grant no. 18-79-10112. Investigations of the spectra and the kinetics of the photoresponse in the spectral range of 5–15 THz were supported by a grant from the President of the Russian Federation for the state support of young Russian scientists—candidates of sciences (MK-1430.2020.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Rumyantsev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumyantsev, V.V., Maremyanin, K.V., Razova, A.A. et al. Investigation of the Photosensitivity of Narrow-Gap and Gapless HgCdTe Solid Solutions in the Terahertz and Sub-Terahertz Range. Semiconductors 54, 1096–1102 (2020). https://doi.org/10.1134/S1063782620090249

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620090249

Keywords:

Navigation