Skip to main content
Log in

Growth and Characterization of TCNQ-Doped Ni(II)TAAB Thin Film As a New π-Conjugated Organic Semiconductor

  • AMORPHOUS, VITREOUS, AND ORGANIC SEMICONDUCTORS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The aim of this work was to obtain a π-conjugated organic semiconductor with the macrocycle Ni(II)(TAAB) ([tetrabenzo (b, f, j, n) [1,5,9,13]tetraazacyclohexadecine]Ni(II) and the electronic acceptor TCNQ (tetracyano-π-quinodimethane), in which hydrogen bonds are formed between TCNQ and Ni(II)(TAAB). Theoretical calculations based on DFT with dispersion force analysis were carried out in order to simulate molecular interaction and to establish the nature of the bonds between both fragments. Thin films of TCNQ-doped Ni(II)TAAB organic semiconductor were obtained through high vacuum evaporation and were structurally and morphological characterized by IR spectroscopy, X-ray diffraction analysis (XRD), and scanning electron microscopy (SEM). The absorption coefficient (α) and photon energy (hν) were calculated from UV–Vis spectroscopy and used to determine the Tauc band gap of the film. This quasi-experimental band gap was compared with that obtained by DFT; both results are in the range established for organic semiconductors. The electrical properties of the organic semiconductor have been obtained from a simple anode|TCNQ-doped Ni(II)TAAB|cathode device. The conductivity of this device was determined from electrical measurements of I(V). TCNQ-doped Ni(II)TAAB has semiconducting characteristics and its conductivity values are of order 10–5 S cm–1. Band gap determination and the I(V) study were both carried out in order to analyze the effect of doped TCNQ in the macrocycle. This work suggests that TCNQ-doped Ni(II)TAAB represents an alternative approach to obtaining a semiconductor-like behaviour that may be suitable for organic electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. H. W. Schock, Appl. Surf. Sci. 92, 606 (1996).

    Article  ADS  Google Scholar 

  2. E. Serrano, G. Rus, and G. Garcia-Martinez, Renew. Sust. Energ. Rev. 13, 2373 (2009).

    Article  Google Scholar 

  3. A. G. Kolchinski, Coord. Chem. Rev. 174, 207 (1998).

    Article  Google Scholar 

  4. J. C. García-Ramos, R. Galindo-Murillo, A. Tovar-Tovar, A. L. Alonso-Saenz, V. Gómez-Vidales, M. Flores-Álamo, L. Ortiz-Frade, F. Cortes-Guzmán, R. Moreno-Esparza, A. Campero, and L. Ruiz-Azuara, Chem. Eur. and J. 20, 13730 (2014).

    Article  Google Scholar 

  5. M. Más-Montoya, PhD Thesis (Univ. Murcia, Spain, 2015). https://digitum.um.es/xmlui/handle/10201/44701. Accessed February 28, 2019.

  6. M. E. Sánchez-Vergara, A. Ortiz, C. Alvarez-Toledano, and J. R. Alvarez, Thin Solid Films 488, 34 (2005).

    Article  ADS  Google Scholar 

  7. G. García-Moreno, PhD Thesis (Univ. Jaén, Spain, 2012). ruja.ujaen.es/bitstream/10953/390/1/9788484396833.pdf. Cited February 28, 2019.

  8. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  ADS  Google Scholar 

  9. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  ADS  Google Scholar 

  10. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.1 (Gaussian, Inc., Wallingford CT, 2009).

    Google Scholar 

  11. S. Grimme, J. Antony, S. Ehrlich, and H. J. Krieg, J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  Google Scholar 

  12. M. E. Sánchez-Vergara, J. Gómez-Lara, R. A. Toscano, and S. Hernández-Ortega, J. Chem. Crystallogr. 28, 825 (1998).

    Article  Google Scholar 

  13. E. D. Glowaski, M. Irimia-Vladu, S. Bauer, and N. S. Sariciftci, J. Mater. Chem. B 1, 3742 (2013).

    Article  Google Scholar 

  14. E. D. Glowaski, M. Irimia-Vladu, M. Kaltenbrunner, J. Gasiorowski, M. S. White, U. Monkowius, G. Romanazzi, G. P. Suranna, P. Mastrorilli, T. Sekitani, S. Baur, T. Someya, L. Torsi, and N. S. Sariciftci, Adv. Mater. 25, 1563 (2013).

    Article  Google Scholar 

  15. S. Schindler and D. J. Szalda, Inorg. Chim. Acta 228, 93 (1995).

    Article  Google Scholar 

  16. N. Laidani, R. Bartali, G. Gottardi, M. Anderle, and P. Cheyssac, J. Phys.: Condens. Matter 20, 015216 (2008).

    ADS  Google Scholar 

  17. T. M. Mok and S. K. O’Leary, J. Appl. Phys. 102, 113525 (2007).

    Article  ADS  Google Scholar 

  18. F. Urbach, Phys. Rev. 92, 1324 (1953).

    Article  ADS  Google Scholar 

  19. S. K. O’Leary and P. K. Lim, Solid State Commun. 104, 17 (1997).

    Article  ADS  Google Scholar 

  20. T. Kamiya, K. Nomura, and H. Hosono, Phys. Status Solidi A 206, 860 (2009).

    Article  ADS  Google Scholar 

  21. C. Örek, F. Arslan, B. Gündüz, O. Kaygili, and N. Bulut, Chem. Phys. Lett. 696, 12 (2018).

    Article  ADS  Google Scholar 

  22. A. J. Heeger, Adv. Mater. 26, 10 (2014).

    Article  Google Scholar 

  23. M. Castellani and D. Berner, J. Appl. Phys. 102, 24509 (2007).

    Article  Google Scholar 

  24. I. Yoo, M. Lee, C. Lee, D. W. Kim, I. S. Moon, and D. H. Hwang, Synth. Met. 153, 97 (2005).

    Article  Google Scholar 

  25. M. E. Sánchez-Vergara, R. Salcedo, B. Molina, R. Carrera-Téllez, J. R. Álvarez-Bada, A. Hernández-García, and V. Gómez-Vidales, Spectrochim. Acta, Part A 200, 158 (2018).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank R. Maya Rangel of Universidad Anahuac Mexico for technical support.

Funding

M.E. Sánchez-Vergara acknowledges the financial support from Universidad Anahuac México, project number INNADBSEVM140129141.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Sánchez-Vergara.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Vergara, M.E., Molina, B., Hernández-García, A. et al. Growth and Characterization of TCNQ-Doped Ni(II)TAAB Thin Film As a New π-Conjugated Organic Semiconductor. Semiconductors 54, 441–449 (2020). https://doi.org/10.1134/S1063782620040144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620040144

Keywords:

Navigation