Skip to main content
Log in

Synthesis and Comparison of the Electrical Properties of Polyaniline and Poly[(N-2-hydroxyethyl)aniline]

  • NANOSTRUCTURES TECHNOLOGY
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Supramolecular structures (domains, associates, nanoparticles) based on conjugated polymers are attractive basis for creating new materials for use in modern electronics. In this work we propose a mechanochemical method of synthesis of electrochemically active aniline- and N-(2-hydroxyethyl)aniline-based polymers. The effect of hydroxyethyl moieties on self-assembly of nanoparticles has been studied. Methods of dynamic light scattering and transmission electron microscopy have shown formation of nanosized particles of polyaniline and submicron particles of poly[(N-2-hydroxyethyl)aniline]. The electrical properties of materials were investigated: conductivity of polyaniline is 0.14 Sm/cm, which is constant over a wide range of temperatures and frequencies; conductivity of poly[(N-2-hydroxyethyl)aniline] is in range 2 × 10–9–1 × 10–6 Sm/cm, which strongly depends on temperature and alternating current frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. W. A. Muñoz, S. K. Singh, J. F. Franco-Gonzalez, M. Linares, X. Crispin, and I. V. Zozoulenko, Phys. Rev. B 94, 205202 (2016).

    Article  ADS  Google Scholar 

  2. L. Lu, T. Zheng, Q. Wu, A. M. Schneider, D. Zhao, and L. Yu, Chem. Rev. 115, 12666 (2015).

    Article  Google Scholar 

  3. R. L. Zaffino, T. Galan, W. A. Pardo, M. Mir, and J. Samitier, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7, 817 (2015).

    Article  Google Scholar 

  4. S. K. Dhawan, A. Kumar, H. Bhandari, B. M. S. Bisht, and F. Khatoon, J. Polym. Sci. 5 (1A), 7 (2015).

    Google Scholar 

  5. M. A. Soto-Oviedo, O. A. Araújo, R. Faez, M. C. Re-zende, and M. A. de Paoli, Synth. Met. 156, 1249 (2006).

    Article  Google Scholar 

  6. O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, and S. Desbief, Nat. Mater. 13, 190 (2014).

    Article  ADS  Google Scholar 

  7. L. Feng, C. Zhu, H. Yuan, L. Liu, F. Lv, and S. Wang, Chem. Soc. Rev. 42, 6620 (2013).

    Article  Google Scholar 

  8. C. Tang, N. Chen, and X. Hu, in Conducting Polymer Hybrids (Springer Int., Cham, Switzerland, 2017), p. 1.

    Google Scholar 

  9. Y. Shi, L. Peng, Y. Ding, Y. Zhao, and G. Yu, Chem. Soc. Rev. 44, 6684 (2015).

    Article  Google Scholar 

  10. S. Bhadra, D. Khastgir, N. K. Singha, and J. H. Lee, Prog. Polym. Sci. 34, 783 (2009).

    Article  Google Scholar 

  11. J. Huang, Pure Appl. Chem. 78, 15 (2006).

    Article  Google Scholar 

  12. J. C. García-Gallegos, Y. I. Vega-Cantú, and F. J. Rodríguez-Macías, J. Mater. Res. 33, 1486 (2018).

    Article  ADS  Google Scholar 

Download references

Funding

The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Stoikov.

Ethics declarations

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadieva, A.I., Gorbachuk, V.V., Latypov, R.R. et al. Synthesis and Comparison of the Electrical Properties of Polyaniline and Poly[(N-2-hydroxyethyl)aniline]. Semiconductors 53, 2090–2093 (2019). https://doi.org/10.1134/S1063782619120133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619120133

Keywords:

Navigation