Skip to main content
Log in

Effect of dopants and morphology on the electrical properties of polyaniline for various applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The tunable electrical conductivity in the conducting polymer is one of the significant advantages for focusing on these materials for flexible electronics and electrical applications. In this work, the polyaniline electrical conductivity is tuned by doping with different dopant materials, varying doping concentrations, and different morphologies. The experimental electrical conductivity results are correlated with the optical band gaps and their corresponding electronic transitions. Increasing the doping concentration from 0 to 1.0 M HCl increases electrical conductivity from 1.98 to 10.2 Scm−1. The observed five-fold increment is attributed to the increase in polarons in the polymer chain with doping. The polyaniline electrical conductivity is also tuned by making different morphologies. The measured electrical conductivity is larger for the polyaniline nanowhisker and nanofiber (~ 2 Scm−1) samples than the sample with highly entangled polymer chains (0.26 Scm−1). Moreover, it was found that the polyaniline nanofibers with ordered polymer chains show larger electrical conductivity (1.75 and 1.27 Scm−1) as compared with the disordered polymer chains (0.22 Scm−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Logothetidis, Mater. Sci. Eng. B 152, 96 (2008)

    Article  CAS  Google Scholar 

  2. Q. Zhang, Y. Sun, W. Xu, D. Zhu, Adv. Mater. 26, 6829 (2014)

    Article  CAS  Google Scholar 

  3. S. Lee, S. Kim, A. Pathak, A. Tripathi, T. Qiao, Y. Lee, H. Lee, H.Y. Woo, Macromol. Res. 28, 531 (2020)

    Article  CAS  Google Scholar 

  4. B. Lüssem, M. Riede, K. Leo, Doping of organic semiconductors. Phys. Status Solidi A 210, 9–43 (2013)

    Article  Google Scholar 

  5. W. Zhao, J. Ding, Y. Zou, C.-A. Di, D. Zhu, Chem. Soc. Rev. 49, 7210 (2020)

    Article  CAS  Google Scholar 

  6. Y. Du, J. Xu, B. Paul, P. Eklund, Appl. Mater. Today 12, 366 (2018)

    Article  Google Scholar 

  7. A. Kausar, J. Macromol. Sci. Part A 54, 640 (2017)

    Article  CAS  Google Scholar 

  8. Y. Wang, X. Jing, Polym. Adv. Technol. 16, 344 (2005)

    Article  CAS  Google Scholar 

  9. A. Ramanavičius, A. Ramanavičienė, A. Malinauskas, Electrochim. Acta 51, 6025 (2006)

    Article  Google Scholar 

  10. U. Lange, N.V. Roznyatovskaya, V.M. Mirsky, Anal. Chim. Acta 614, 1 (2008)

    Article  CAS  Google Scholar 

  11. H. Bai, G. Shi, Sensors 7, 267 (2007)

    Article  CAS  Google Scholar 

  12. M. Gerard, A. Chaubey, B. Malhotra, Biosens. Bioelectron. 17, 345 (2002)

    Article  CAS  Google Scholar 

  13. K. Kaneto, J. Phys. Conf. Ser. 704, 012004 (2016)

    Article  Google Scholar 

  14. N.F. Attia, K.E. Geckeler, Macromol. Rapid Commun. 34, 1043 (2013)

    Article  CAS  Google Scholar 

  15. S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Prog. Polym. Sci. 34, 783 (2009)

    Article  CAS  Google Scholar 

  16. N. Massonnet, A. Carella, A. de Geyer, J. Faure-Vincent, J.-P. Simonato, Chem. Sci. 6, 412 (2015)

    Article  CAS  Google Scholar 

  17. J. Li, X. Tang, H. Li, Y. Yan, Q. Zhang, Synth. Met. 160, 1153 (2010)

    Article  CAS  Google Scholar 

  18. K. Zhang, J. Qiu, S. Wang, Nanoscale 8, 8033 (2016)

    Article  CAS  Google Scholar 

  19. M. Culebras, C.M. Gomez, A. Cantarero, Materials 7, 6701 (2014)

    Article  Google Scholar 

  20. M. He, F. Qiu, Z. Lin, Energy Environ. Sci. 6, 1352 (2013)

    Article  Google Scholar 

  21. Y. Sun, C.A. Di, W. Xu, D. Zhu, Adv. Electron. Mater. 5, 1800825 (2019)

    Article  CAS  Google Scholar 

  22. N. Dubey, M. Leclerc, J. Polym. Sci. Part B Polym. Phys. 49, 467 (2011)

    Article  CAS  Google Scholar 

  23. L.M. Cowen, J. Atoyo, M.J. Carnie, D. Baran, B.C. Schroeder, ECS J. Solid State Sci. Technol. 6, N3080 (2017)

    Article  CAS  Google Scholar 

  24. E. Holland, S. Pomfret, P. Adams, A. Monkman, J. Phys. Condens. Matter 8, 2991 (1996)

    Article  CAS  Google Scholar 

  25. H. Anno, M. Hokazono, F. Akagi, M. Hojo, N. Toshima, J. Electron. Mater. 42, 1346 (2013)

    Article  CAS  Google Scholar 

  26. Y. Sun, Z. Wei, W. Xu, D. Zhu, Synth. Met. 160, 2371 (2010)

    Article  CAS  Google Scholar 

  27. M. Amrithesh, S. Aravind, S. Jayalekshmi, R. Jayasree, J. Alloys Compd. 458, 532 (2008)

    Article  CAS  Google Scholar 

  28. M.V. Kulkarni, A.K. Viswanath, R. Marimuthu, T. Seth, J. Polym. Sci. Part A Polym. Chem. 42, 2043 (2004)

    Article  CAS  Google Scholar 

  29. S. Stafström, J. Bredas, A. Epstein, H. Woo, D. Tanner, W. Huang, A. MacDiarmid, Phys. Rev. Lett. 59, 1464 (1987)

    Article  Google Scholar 

  30. Y. Xue, C. Gao, L. Liang, X. Wang, G. Chen, J. Mater. Chem. A 6, 22381 (2018)

    Article  CAS  Google Scholar 

  31. Y. Du, S.Z. Shen, W. Yang, R. Donelson, K. Cai, P.S. Casey, Synth. Met. 161, 2688 (2012)

    Article  Google Scholar 

  32. J. Sun, M.L. Yeh, B.J. Jung, B. Zhang, J. Feser, A. Majumdar, H.E. Katz, Macromolecules 43, 2897 (2010)

    Article  CAS  Google Scholar 

  33. E. Song, J.-W. Choi, Nanomaterials 3, 498 (2013)

    Article  CAS  Google Scholar 

  34. L. Bach-Toledo, B.M. Hryniewicz, L.F. Marchesi, L.H. Dall’Antonia, M. Vidotti, F. Wolfart, Mater. Sci. Energy Technol. 3, 78 (2020)

    CAS  Google Scholar 

  35. N. Toshima, Macromol. Symp. 186, 81–86 (2002)

    Article  CAS  Google Scholar 

  36. G. Liao, Q. Li, Z. Xu, Prog. Org. Coat. 126, 35 (2019)

    Article  CAS  Google Scholar 

  37. J. Stejskal, R. Gilbert, Pure Appl. Chem. 74, 857 (2002)

    Article  CAS  Google Scholar 

  38. J. Jang, J. Bae, K. Lee, Polymer 46, 3677 (2005)

    Article  CAS  Google Scholar 

  39. J. Huang, R.B. Kaner, J. Am. Chem. Soc. 126, 851 (2004)

    Article  CAS  Google Scholar 

  40. A.P. Hussain, A. Kumar, Bull. Mater. Sci. 26, 329 (2003)

    Article  CAS  Google Scholar 

  41. P. Kong, P. Liu, Z. Ge, H. Tan, L. Pei, J. Wang, P. Zhu, X. Gu, Z. Zheng, Z. Li, Catal. Sci. Technol. 9, 753 (2019)

    Article  CAS  Google Scholar 

  42. X. Wang, T. Sun, C. Wang, C. Wang, W. Zhang, Y. Wei, Macromol. Chem. Phys. 211, 1814 (2010)

    Article  CAS  Google Scholar 

  43. T. Sen, S. Mishra, N.G. Shimpi, Mater. Sci. Eng. B 220, 13 (2017)

    Article  CAS  Google Scholar 

  44. S. Padmapriya, S. Harinipriya, K. Jaidev, V. Sudha, D. Kumar, S. Pal, Int. J. Energy Res. 42, 1196 (2018)

    Article  CAS  Google Scholar 

  45. F.R. Rangel-Olivares, E.M. Arce-Estrada, R. Cabrera-Sierra, Coatings 11, 653 (2021)

    Article  CAS  Google Scholar 

  46. M.J.R. Cardoso, M.F.S. Lima, D.M. Lenz, Mater. Res. 10, 425 (2007)

    Article  CAS  Google Scholar 

  47. M. Das, A. Akbar, D. Sarkar, Synth. Met. 249, 69 (2019)

    Article  CAS  Google Scholar 

  48. E. Gomes, M. Oliveira, Am. J. Polym. Sci. 2, 5 (2012)

    Article  Google Scholar 

  49. S. Sinha, S. Bhadra, D. Khastgir, J. Appl. Polym. Sci. 112, 3135 (2009)

    Article  CAS  Google Scholar 

  50. K. Gupta, P. Jana, A. Meikap, Synth. Met. 160, 1566 (2010)

    Article  CAS  Google Scholar 

  51. K.A. Ibrahim, Arab. J. Chem. 10, S2668 (2017)

    Article  CAS  Google Scholar 

  52. A. Pron, P. Rannou, Prog. Polym. Sci. 27, 135 (2002)

    Article  CAS  Google Scholar 

  53. S. Gul, A.-U.-H.A. Shah, S. Bilal, J. Phys. Conf. Ser. 439, 012002 (2013)

    Article  CAS  Google Scholar 

  54. M. Scully, M. Petty, A. Monkman, Synth. Met. 55, 183 (1993)

    Article  CAS  Google Scholar 

  55. R. Borah, S. Banerjee, A. Kumar, Synth. Met. 197, 225 (2014)

    Article  CAS  Google Scholar 

  56. W. Huang, A. MacDiarmid, Polymer 34, 1833 (1993)

    Article  CAS  Google Scholar 

  57. M. Khalid, M.A. Tumelero, I.S. Brandt, V.C. Zoldan, J.J.S. Acuña, A.A. Pasa, Indian J. Mater. Sci. 2013, 718304 (2013)

    Google Scholar 

Download references

Acknowledgements

R. Lenin thanks DST-SERB for the financial support in the form of a National Postdoctoral

Fellowship (N-PDF) (File No: PDF/2018/003583).

Funding

DST-SERB in the form of a National Postdoctoral Fellowship (N-PDF) (File No: PDF/2018/003583).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramanujam Lenin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenin, R., Singh, A. & Bera, C. Effect of dopants and morphology on the electrical properties of polyaniline for various applications. J Mater Sci: Mater Electron 32, 24710–24725 (2021). https://doi.org/10.1007/s10854-021-06883-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06883-6

Navigation