Skip to main content
Log in

Subminiature emitters based on a single (111) In(Ga)As quantum dot and hybrid microcavity

  • XXI International Symposium “Nanophysics and Nanoelectronics”, Nizhny Novgorod, March 13–16, 2017
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The results of numerical modeling and investigation of a hybrid microcavity based on a semiconductor Bragg reflector and a microlens selectively positioned above a single (111) In(Ga)As quantum dot are presented. Emitters based on the hybrid microcavity demonstrate the effective pumping of a single quantum dot and high emission output efficiency. The microcavity design can be used to implement emitters of polarization- entangled photon pairs based on single semiconductor quantum dots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).

    Article  ADS  Google Scholar 

  2. V. A. Gaisler, A. V. Gaisler, A. S. Jaroshevich, I. A. Derebezov, M. M. Kachanova, Yu. A. Zhivodkov, T. A. Gavrilova, A. S. Medvedev, L. A. Nenasheva, K. V. Grachev, V. K. Sandyrev, A. S. Kozhuhov, V. M. Shayahmetov, A. K. Kalagin, A. K. Bakarov, et al., Semiconductors 49, 33 (2015).

    Article  ADS  Google Scholar 

  3. A. Lochmann, E. Stock, O. Schulz, et al., Electron. Lett. 45, 566 (2009).

    Article  Google Scholar 

  4. O. Benson et al., Phys. Rev. Lett. 84, 2513 (2000).

    Article  ADS  Google Scholar 

  5. D. Bimberg, E. Stock, A. Lochmann, et al., IEEE Photon. J. 1, 58 (2009).

    Article  Google Scholar 

  6. A. V. Gaisler, I. A. Derebezov, A. S. Yaroshevich, A. K. Kalagin, A. K. Bakarov, A. I. Toropov, D. V. Shcheglov, V. A. Gaisler, A. V. Latyshev, and A. L. Aseev, JETP Lett. 97, 274 (2013).

    Article  ADS  Google Scholar 

  7. R. Seguin, A. Schliwa, S. Rodt, et al., Phys. Rev. Lett. 95, 257402 (2005).

    Article  ADS  Google Scholar 

  8. R. Seguin, A. Schliwa, S. Rodt, et al., Physica E 32, 101 (2006).

    Article  ADS  Google Scholar 

  9. R. Seguin, A. Schliwa, T. D. Germann, et al., Appl. Phys. Lett. 89, 263109 (2006).

    Article  ADS  Google Scholar 

  10. S. Seidl, M. Kroner, A. Högele, et al., Appl. Phys. Lett. 88, 203113 (2006).

    Article  ADS  Google Scholar 

  11. K. Kowalik, O. Krebs, A. Lemaître, et al., Appl. Phys. Lett. 86, 041907 (2005).

    Article  ADS  Google Scholar 

  12. R. M. Stevenson, R. J. Young, P. Atkinson, et al., Nature 439, 179 (2006).

    Article  ADS  Google Scholar 

  13. M. Povolotskyi, A. di Carlo, and S. Birner, Phys. Status Solidi C 1, 1511 (2004).

    Article  ADS  Google Scholar 

  14. R. Singh and G. Bester, Phys. Rev. Lett. 103, 063601 (2009).

    Article  ADS  Google Scholar 

  15. A. Schliwa, M. Winkelnkemper, A. Lochmann, et al., Phys. Rev. B 80, 161307 (2009).

    Article  ADS  Google Scholar 

  16. A. Mohan, M. Felici, P. Gallo, et al., Nat. Photon. 4, 302 (2010).

    Article  Google Scholar 

  17. JCMwave—Complete Finite Element Technology for Optical Simulations. http://www.jcmwave.com.

  18. Meep FDTD. http://ab-initio.mit.edu/meep.

  19. S. Panyakeow, Eng. J. 13, 51 (2009).

    Article  Google Scholar 

  20. Z. Gong, Z. C. Niu, S. S. Huang, et al., Appl. Phys. Lett. 87, 093116 (2005).

    Article  ADS  Google Scholar 

  21. M. Gschrey, A. Thoma, P. Schnauber, et al., Nat. Commun. 6, 1 (2015).

    Article  Google Scholar 

  22. R. M. Thompson, R. M. Stevenson, A. J. Shields, et al., Phys. Rev. B 64, 201302 (2001).

    Article  ADS  Google Scholar 

  23. E. Purcell, H. Torrey, and R. Pound, Phys. Rev. 69, 37 (1946).

    Article  ADS  Google Scholar 

  24. P. Michler, Single Quantum Dots, Fundamentals, Applications and New Concepts (Springer, Berlin, 2003).

    Google Scholar 

  25. P. Michler, Single Semiconductor Quantum Dots (Springer, Berlin, 2009).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Derebezov.

Additional information

Original Russian Text © I.A. Derebezov, V.A. Gaisler, A.V. Gaisler, D.V. Dmitriev, A.I. Toropov, S. Fischbach, A. Schlehahn, A. Kaganskiy, T. Heindel, S. Bounouar, S. Rodt, S. Reitzenstein, 2017, published in Fizika i Tekhnika Poluprovodnikov, 2017, Vol. 51, No. 11, pp. 1451–1455.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derebezov, I.A., Gaisler, V.A., Gaisler, A.V. et al. Subminiature emitters based on a single (111) In(Ga)As quantum dot and hybrid microcavity. Semiconductors 51, 1399–1402 (2017). https://doi.org/10.1134/S1063782617110100

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782617110100

Navigation