Skip to main content
Log in

Microcavity for Single Quantum Dot Based Emitters

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The design of microcavity for single quantum dot based emitters is developed. The microcavity consists of semiconductor distributed Bragg reflector and microlens fabricated by selective oxidation of gradient Al\({}_{x}\)Ga\({}_{1-x}\)As layer. The microcavity design provides a high external quantum efficiency of radiation extraction (up to 70\(\%\)) and a high efficiency of radiation input into an optical fiber. The microcavity can be used to create emitters of single photons and emitters of entangled photon pairs based on single semiconductor quantum dots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, ‘‘Quantum cryptography,’’ Rev. Mod. Phys. 74 (1), 145–195 (2002). https://doi.org/10.1103/RevModPhys.74.145

    Article  ADS  MATH  Google Scholar 

  2. D. Bouwmeester, A. K. Ekert, and A. Zeilinger, The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation (Springer, Berlin, 2000). https://doi.org/10.1007/978-3-662-04209-0

  3. D. Bimberg, M. Grundmann, and N. Ledentsov, Quantum Dot Heterostructures (John Wiley & Sons, Chichester, 1999).

    Google Scholar 

  4. Semiconductor Nanostructures, Ed. by D. Bimberg, NanoScience and Technology, (Springer-Verlag, Berlin, 2008). https://doi.org/10.1007/978-3-540-77899-8

  5. Single Quantum Dots: Fundamentals, Applications and New Concepts, Ed. by P. Michler (Springer-Verlag, Berlin, 2003). https://doi.org/10.1007/b13751

  6. Self-Assembled Quantum Dots, Ed. by Z. M. Wang, Lecture Notes in Nanoscale Science and Technology (Springer, New York, 2008). https://doi.org/10.1007/978-0-387-74191-8

  7. Single Semiconductor Quantum Dots, Ed. by P. Michler, NanoScience and Technology (Springer-Verlag, Berlin, 2009). https://doi.org/10.1007/978-3-540-87446-1

  8. A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, ‘‘Electrically driven single quantum dot polarised single photon emitter,’’ Electron. Lett. 45, 566–567 (2009). https://doi.org/10.1049/el:20061076

    Article  ADS  Google Scholar 

  9. D. Bimberg, E. Stock, A. Lochmann, A. Schliwa, J. A. Tofflinger, W. Unrau, M. Munnix, S. Rodt, V. A. Haisler, A. I. Toropov, A. Bakarov, and A. K. Kalagin, ‘‘Quantum dots for single- and entangled- photon emitters,’’ IEEE Photon. J. 1, 58–68 (2009). https://doi.org/10.1109/JPHOT.2009.2025329

    Article  ADS  Google Scholar 

  10. T. Heindel, C. Kessler, M. Rau, C. Schneider, M. Furst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Robach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Hofling, P. Michler, H. WEinfurter, and A. Forchel, ‘‘Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,’’ New J. Phys. 14, 083001 (2012). https://doi.org/10.1088/1367-2630/14/8/083001

    Article  ADS  Google Scholar 

  11. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, ‘‘Regulated and entangled photons from a single quantum dot,’’ Phys. Rev. Lett. 84, 2513–2516 (2000). https://doi.org/10.1103/PhysRevLett.84.2513

    Article  ADS  Google Scholar 

  12. R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, ‘‘A semiconductor source of triggered entangled photon pairs,’’ Nature 439, 179–182 (2006). https://doi.org/10.1038/nature04446

    Article  ADS  Google Scholar 

  13. A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, ‘‘Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,’’ Nat. Photon. 4, 302–306 (2010). https://doi.org/10.1038/nphoton.2010.2

    Article  Google Scholar 

  14. R. M. Stevenson, C. L. Salter, J. Nilsson, A. J. Bennett, M. B. Ward, I. Farrer, D. A. Ritchie, and A. J. Shields, ‘‘Indistinguishable entangled photons generated by a light-emitting diode,’’ Phys. Rev. Lett. 108, 040503 (2012). https://doi.org/10.1103/PhysRevLett.108.040503

    Article  ADS  Google Scholar 

  15. Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization and Application Ed. by C. W. Wilsmen, H. Temkin, and L. Coldren (Cambridge Univ. Press, Cambridge, 1999).

    Google Scholar 

  16. Vertical-Cavity Surface-Emitting Lasers: Technology and Applications Ed. by J. Cheng and N. K. Dutta (Gordon and Breach Science Publ., Amsterdam, 2000).

    Google Scholar 

  17. Vertical-Cavity Surface-Emitting Lasers Devices, Ed. by H. E. Li and K. Iga, Springer Series in Photonics (Springer, Berlin, 2003). https://doi.org/10.1007/978-3-662-05263-1

  18. VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers, Ed. by R. Michalzik, Springer Series in Optical Sciences (Springer, Berlin, 2013). https://doi.org/10.1007/978-3-642-24986-0

  19. A. Oskooi, D. Roundy, M. Ibanescu, P. Bernel, J. D. Joannopoulos, and S. G. Johnson, ‘‘MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,’’ Comput. Phys. Commun. 181, 687–702 (2010).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 18-72-10056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Derebezov.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derebezov, I.A., Gaisler, A.V., Mironov, A.Y. et al. Microcavity for Single Quantum Dot Based Emitters. Optoelectron.Instrument.Proc. 57, 521–525 (2021). https://doi.org/10.3103/S8756699021050034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699021050034

Keywords:

Navigation