Skip to main content
Log in

Vertical transport in type-II heterojunctions with InAs/GaSb/AlSb composite quantum wells in a high magnetic field

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Vertical transport in type-II heterojunctions with a two-barrier AlSb/InAs/GaSb/AlSb quantum well (QW) grown by MOVPE on an n-InAs (100) substrate is investigated in quantizing magnetic fields up to B = 14 T at low temperatures T = 1.5 and 4.2 K. The width of the QWs is selected from the formation condition of the inverted band structure. Shubnikov–de Haas oscillations are measured at two orientations of the magnetic field (perpendicular and parallel) relative to the structure plane. It is established that conduction in the structure under study is occurs via both three-dimensional (3D) substrate electrons and two-dimensional 2D QW electrons under quantum limit conditions for bulk electrons (B > 5 T). The electron concentrations in the substrate and InAs QW are determined. The g-factor for 3D carriers is determined by spin splitting of the zero Landau level. It is shown that the conductance maxima in a magnetic field perpendicular to the structure plane and parallel to the current across the structure in fields B > 9 T correspond to the resonant tunneling of 3D electrons from the emitter substrate into the InAs QW through the 2D electron states of the Landau levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Naveh and B. Laikhtman, Appl. Phys. Lett. 66, 1980 (1995).

    Article  ADS  Google Scholar 

  2. H. Kroemer, Physica E 20, 196 (2004).

    Article  ADS  Google Scholar 

  3. A. Zakharova, S. T. Yen, and K. A. Chao, Phys. Rev. B 64, 235332 (2001), Phys. Rev. B 66, 085312 (2002).

    Article  ADS  Google Scholar 

  4. L. L. Chang, J. Phys. Soc. Jpn. 49 (Suppl. A), 997 (1980).

    Google Scholar 

  5. M. Y. Yang, C. H. Yang, B. R. Bennet, and B. V. Shanabrook, Phys. Rev. Lett. 78, 4613 (1997).

    Article  ADS  Google Scholar 

  6. C. Liu, T. L. Hughes, X. L. Qi, K. Wang, and S. Zhang, Phys. Rev. B 81, 236601 (2008).

    Google Scholar 

  7. I. Knez, R. R. Du, and G. Sullivan, Phys. Rev. B 81, 201301 (2010).

    Article  ADS  Google Scholar 

  8. I. Knez, C. T. Rettner, S.-H. Yang, S. S. P. Parkin, L. Du, R.-R. Du, and G. Sullivan, Phys. Rev. Lett. 112, 026602 (2014).

    Article  ADS  Google Scholar 

  9. L. Du, I. Knez, G. Sullivan, and R. R. Du, Phys. Rev. Lett. 114, 096802 (2015).

    Article  ADS  Google Scholar 

  10. F. Nichele, A. N. Pal, P. Pietsch, I. Ihn, K. Enslin, C. Charpenter, and W. Wegscheider, Phys. Rev. Lett. 112, 036802 (2014).

    Article  ADS  Google Scholar 

  11. X. Shi, W. Yu, Zh. Jiang, B. A. Bernving, et al., arXiv:14 doi 10.7342.v3 [cond-mat.supr-cond] (2014).10.7342.v3

  12. M. P. Mikhailova and A. N. Titkov, Semicond. Sci. Technol. 9, 1279 (1994).

    Article  ADS  Google Scholar 

  13. K. D. Moiseev, V. A. Berezovets, M. P. Mikhailova, V. I. Nizhankovski, R. V. Parfeniev, and Yu. P. Yakovlev, Surf. Sci. 482, 1083 (2001).

    Article  ADS  Google Scholar 

  14. M. P. Mikhailova, K. D. Moiseev, and Yu. P. Yakovlev, Semicond. Sci. Technol. 19, R109 (2004).

    Article  ADS  Google Scholar 

  15. R. V. Parfeniev, K. D. Moiseev, V. A. Berezovets, N. S. Averkiev, M. P. Mikhailova, V. I. Nizhankovski, and D. Kaczorovsky, J. Magn. Mater. 321, 712 (2009).

    Article  ADS  Google Scholar 

  16. V. A. Berezovets, K. D. Moiseev, M. P. Mikhailova, R. V. Parfeniev, Yu. P. Yakovlev, and V. I. Nizhankovski, Low. Temp. Phys. 33, 137 (2007).

    Article  ADS  Google Scholar 

  17. N. S. Averkiev, V. A. Berezovets, M. P. Mikhailova, K. D. Moiseev, V. I. Nizhankovski, R. V. Parfeniev, and K. S. Romanov, Phys. Solid State 46, 2153 (2004).

    Article  ADS  Google Scholar 

  18. A. Nogaret, M. A. Maldonado, R. E. Carnahan, K. P. Martin, and R. J. Higgins, Phys. Rev. B 47, 13872 (1993).

    Article  ADS  Google Scholar 

  19. E. Mendez, J. Nocera, and W. I. Wang, Phys. Rev. B 45, 3910 (1992).

    Article  ADS  Google Scholar 

  20. D. J. Barnes, R. J. Nickolas, R. J. Warburton, N. J. Mason, P. Y. Walker, and N. Miura, Phys. Rev. B 49, 10474 (1994).

    Article  ADS  Google Scholar 

  21. E. E. Mendez and J. Nocera, Phys. Rev. B 47, 13937 (1993).

    Article  ADS  Google Scholar 

  22. X. X. Liu, R. R. Marquardt, D. Z.-Y. Ting, and T. C. McGill, Phys. Rev. B 55, 7073 (1997).

    Article  ADS  Google Scholar 

  23. D. Kindl, J. Touskova, E. Hulicius, J. Pangrác, T. Šimecek, V. Jurka, P. Hubik, J. J. Mares, and J. Kristofic, J. Appl. Phys. 95, 1811 (2004).

    Article  ADS  Google Scholar 

  24. M. P. Mikhailova, E. V. Ivanov, L. V. Danilov, K. V. Kalinina, N. D. Stoyanov, G. G. Zegrya, Yu. P. Yakovlev, E. Hulicius, A. Hospodková, J. Pangrác, and M. Ziková, J. Appl. Phys. 112, 023108 (2012).

    Article  ADS  Google Scholar 

  25. A. Hospodková, E. Hulicius, J. Pangrác, F. Dominec, M. P. Mikhailova, A. I. Veinger, and I. V. Kochman, J. Cryst. Growth 464, 206 (2017).

    Article  ADS  Google Scholar 

  26. L. L. Chang, N. J. Kawai, E. E. Mendez, C.-A. Chang, and L. Esaki, Appl. Phys. Lett. 38, 30 (1981).

    Article  ADS  Google Scholar 

  27. M. Altareli, J. C. Maan, L. L. Chang, and L. Esaki, Phys. Rev. B 35, 189867 (1987).

    Article  ADS  Google Scholar 

  28. E. E. Mendez, L. Esaki, and W. I. Wang, Phys. Rev. B 33, 2893 (1985).

    Article  ADS  Google Scholar 

  29. M. P. Mikhailova, A. I. Veinger, I. V. Kochman, P. V. Semenikhin, K. V. Kalinina, R. V. Parfeniev, V. A. Berezovets, M. O. Safonchik, A. Hospodková, J. Pangrác, M. Ziková, and E. Hulicius, J. Nanophoton. 10, 046013 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Mikhailova.

Additional information

Original Russian Text © M.P. Mikhailova, V.A. Berezovets, R.V. Parfeniev, L.V. Danilov, M.O. Safonchik, A. Hospodková, J. Pangrác, E. Hulicius, 2017, published in Fizika i Tekhnika Poluprovodnikov, 2017, Vol. 51, No. 10, pp. 1393–1399.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailova, M.P., Berezovets, V.A., Parfeniev, R.V. et al. Vertical transport in type-II heterojunctions with InAs/GaSb/AlSb composite quantum wells in a high magnetic field. Semiconductors 51, 1343–1349 (2017). https://doi.org/10.1134/S1063782617100141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782617100141

Navigation