Skip to main content
Log in

Topological Insulator Superlattices

  • U.S. Workshop on Physics and Chemistry of II-VI Materials 2017
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

HgTe/CdTe and InAs/GaSb/AlSb superlattices both exhibit a topological insulator transition. In each case, there is an inversion of the s- and p-band ordering for layer thicknesses above a critical value. The resulting topological phase is a 2D bulk insulator at zero temperature, with edges that conduct massless carriers whose direction of motion is locked to their direction of spin. These 1D edge states exhibit essentially dissipationless transport over coherence lengths greater than one micron, with a quantized conductance of e2/h per edge. When a current passes, opposite spins are separated to the two sample edges, giving rise to the so-called quantum spin Hall effect. Effects such as these may be exploited in future low temperature spintronic devices. The edge states in HgTe/CdTe differ from those in InAs/GaSb/AlSb in several ways, due to the type II band alignment and weaker electron–hole hybridization of the III-V superlattice. The former exhibit a simple exponential decay over thousands of Angstroms, while the latter are more strongly confined to the edge, with an oscillating wave function whose period increases with the edge state momentum. In any calculation, the edge state dispersion and the nature of the wave-function depend strongly on the boundary conditions used. A k · p model is presented using standard boundary conditions for the wave function and its derivative, which yields spin polarized edge states with a finite amplitude at the sample edge. The interaction between states at opposite sample edges is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.A. Bernevig, T.L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006).

    Article  Google Scholar 

  2. C. Liu, T.L. Hughes, X.-L. Qi, K. Wang, and S.-C. Zhang, Phys. Rev. Lett. 100, 236601 (2008).

    Article  Google Scholar 

  3. P.C. Klipstein, Phys. Rev. B 91, 035310 (2015); Erratum, Phys. Rev. B 93, 199905(E) (2016)

  4. S.R. White and L.J. Sham, Phys. Rev. Lett. 47, 879 (1981).

    Article  Google Scholar 

  5. M.F.H. Schuurmans and G.W. t’Hooft, Phys. Rev. B 31, 8041 (1985).

    Article  Google Scholar 

  6. P.C. Klipstein, J. Phys. Condes. Matter 30, 275302 (2018).

    Article  Google Scholar 

  7. P.C. Klipstein, J. Phys. Condes. Matter 28, 375801 (2016).

    Article  Google Scholar 

  8. G. Tkachov and E.M. Hankiewicz, Phys. Status Solidi B 250, 215 (2013).

    Article  Google Scholar 

  9. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766 (2007).

    Article  Google Scholar 

  10. I. Knez, R.-R. Du, and G. Sullivan, Phys. Rev. Lett. 107, 136603 (2011).

    Article  Google Scholar 

  11. L. Du, I. Knez, G. Sullivan, and R.R. Du, Phys. Rev. Lett. 114, 096802 (2015).

    Article  Google Scholar 

  12. I. Knez, C.T. Rettner, S.-H. Yang, S.P. Parkin, L. Du, R.-R. Du, and G. Sullivan, Phys. Rev. Lett. 112, 026602 (2014).

    Article  Google Scholar 

  13. C. Brüne, A. Roth, H. Buhmann, E.M. Hankiewicz, L.W. Molenkamp, J. Maciejko, X.-L. Qi, and S.-C. Zhang, Nature 8, 485 (2012).

    Google Scholar 

  14. E.Y. Ma, M. Reyes Calvo, J. Wang, B. Lian, M. Mühlbauer, C. Brüne, Y.-T. Cui, K. Lai, W. Kundhikanjana, Y. Yang, M. Baenninger, M. König, C. Ames, H. Buhmann, P. Leubner, L.W. Molenkamp, S.-C. Zhang, D. Goldhaber-Gordon, M.A. Kelly, and Z.-X. Shen, Nat. Commun. 6, 7252 (2015).

    Article  Google Scholar 

  15. F. Nichele, H.J. Suominen, M. Kjaergaard, C.M. Marcus, E. Sajadi, J.A. Folk, F. Qu, A.J.A. Beukman, F.K. de Vries, J. van Veen, S. Nadj-Perge, L.P. Kouwenhoven, B.-M. Nguyen, A.A. Kiselev, W. Yi, M. Sokolich, M.J. Manfra, E.M. Spanton, and K.A. Moler, New J. Phys. 18, 083005 (2016).

    Article  Google Scholar 

  16. P.C. Klipstein, stacks.iop.org/JPhysCM/28/375801/mmedia (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Klipstein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klipstein, P. Topological Insulator Superlattices. J. Electron. Mater. 47, 5719–5724 (2018). https://doi.org/10.1007/s11664-018-6510-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6510-4

Keywords

Navigation