Skip to main content
Log in

Generation of surface electron states with a silicon–ultrathin-oxide interface under the field-induced damage of metal–oxide–semiconductor structures

  • Surfaces, Interfaces, and Thin Films
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The high-frequency capacitance–voltage characteristics of metal–oxide–semiconductor structures on n-Si substrates with an oxide thickness of 39 Å are studied upon being subjected to damage by field stress. It is shown that the action of a high, but pre-breakdown electric field on an ultrathin insulating layer brings about the formation of a large number of additional localized interface electron states with an energy level arranged at 0.14 eV below the conduction band of silicon. It is found that, as the field stress is increased, the recharging of newly formed centers provides the accumulation of excess charge up to 8 × 1012 cm–2 at the silicon–oxide interface. The lifetime of localized centers created under field stress is two days, after which the dependences of the charge localized at the semiconductor–insulator interface on the voltage at the gate after and before field stress are practically the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Cellere, S. Gerardin, and Al. Paccagnella, in Defects in Microelectronic Materials and Devices, Ed. by D. M. Fleetwood, S. T. Pantelides, and R. D. Schrimpf (CRC, Boca Raton, FL, 2008), Chap. 17, p. 497.

  2. E. H. Poindexter, Semicond. Sci. Technol. 4, 961 (1989).

    Article  ADS  Google Scholar 

  3. F. B. McLean, IEEE Trans. Nucl. Sci. 27, 1651 (1980).

    Article  ADS  Google Scholar 

  4. T. R. Oldham, F. B. McLean, H. E. Boesch, and J. M. McCarrity, Semicond. Sci. Technol. 4, 986 (1989).

    Article  ADS  Google Scholar 

  5. M. L. Reed, Semicond. Sci. Technol. 4, 980 (1989).

    Article  ADS  Google Scholar 

  6. M. Durr, Z. Hu, A. Biedermann, U. Hofer, and T. F. Heinz, Phys. Rev. B 63, 121315(R) (2001).

    Article  ADS  Google Scholar 

  7. K. Komiya and Y. Omura, J. Appl. Phys. 92, 2593 (2002).

    Article  ADS  Google Scholar 

  8. E. I. Goldman, N. F. Kukharskaya, V. G. Narishkina, and G. V. Chucheva, Semiconductors 45, 944 (2011).

    Article  ADS  Google Scholar 

  9. S. M. Sze and K. Ng. Kwok, Physics of Semiconductor Devices (Wiley, New York, 2007).

    Google Scholar 

  10. L. F. Lonnum and J. S. Johannessen, Electron. Lett. 22, 456 (1986).

    Article  Google Scholar 

  11. E. I. Goldman, A. I. Levashova, S. A. Levashov, and G. V. Chucheva, Semiconductors 49, 472 (2015).

    Article  ADS  Google Scholar 

  12. J. Y. Kevin and H. Chenming, IEEE Trans. Electron. Dev. 46, 1500 (1999).

    Article  Google Scholar 

  13. E. H. Nicollian and I. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Chucheva.

Additional information

Original Russian Text © E.I. Goldman, S.A. Levashov, V.G. Naryshkina, G.V. Chucheva, 2017, published in Fizika i Tekhnika Poluprovodnikov, 2017, Vol. 51, No. 9, pp. 1185–1188.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldman, E.I., Levashov, S.A., Naryshkina, V.G. et al. Generation of surface electron states with a silicon–ultrathin-oxide interface under the field-induced damage of metal–oxide–semiconductor structures. Semiconductors 51, 1136–1140 (2017). https://doi.org/10.1134/S1063782617090111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782617090111

Navigation